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ABSTRACT: We present the gauged N = 4 (half-maximal) supergravities in four and five
spacetime dimensions coupled to an arbitrary number of vector multiplets. The gaugings
are parameterized by a set of appropriately constrained constant tensors, which transform
covariantly under the global symmetry groups SL(2) x SO(6,n) and SO(1,1) x SO(5,n),
respectively. In terms of these tensors the universal Lagrangian and the Killing Spinor
equations are given. The known gaugings, in particular those originating from flux com-
pactifications, are incorporated in the formulation, but also new classes of gaugings are
found. Finally, we present the embedding chain of the five dimensional into the four
dimensional into the three dimensional gaugings, thereby showing how the deformation

parameters organize under the respectively larger duality groups.
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1. Introduction

The first examples of NV = 4 supergravities in four spacetime dimensions were constructed
in the second half of the seventies [[]-[f] and within the following decade the coupling of
vector multiplets to these theories and some of their gaugings were worked out [§—f]. In
N = 4 the gaugings are the only known deformations of the theory that are compatible
with supersymmetry. They are induced by minimal couplings of vector fields to isometry
generators, but supersymmetry requires various additional couplings and in particular the
emergence of a scalar potential, thus giving the possibility of ground states with non-
vanishing cosmological constant. So far, however, no stable de Sitter ground state has
been found in these theories [[L0].

From a string theory perspective the N = 4 theories result from orientifold compact-
ifications of IIB supergravity [T, [[J]. In this picture part of the deformation parameters
of the gauging correspond to fluxes or additional branes on the background [[[d-[[7]. But



so far not all known gaugings could be identified in this way. Lower N theories can be
obtained by truncation of the N = 4 supergravities, for example certain relevant N = 1
Kiihler potentials can be computed from the N = 4 scalar potential [[§—RQ].

By incorporating all possible gauged N = 4 supergravities in a universal formulation in
this paper we hope to illuminate the interrelation of the different theories but also to pave
the way for a future analysis of particular gaugings. The gaugings are parameterized by
an embedding tensor which can be treated as a group theoretical object and is subject to a
set of consistency constraints. This method was successfully used to work out the general
gaugings of maximal supergravities for various spacetime dimensions [R1-P4]. For an even
number of spacetime dimensions there are subtleties that seem to hamper the universal
description. For example in D = 4 magnetic vector fields are usually introduced on-shell
via the equations of motion, while for a general gauging they may possibly occur as gauge
fields in the covariant derivative already at the level of the Lagrangian. Closely related to
this problem is the fact that in D = 4 the global symmetry group of a supergravity theory
is generically only realized on-shell since it involves duality rotations between the electric
and magnetic vector fields [R5, Bf). These issues were resolved in [P7], where for a general
four dimensional theory it was explained how to consistently couple electric and magnetic
vector gauge fields together with two-form tensor gauge fields for a general gauging. Here
we apply this method to the case of gauged N = 4 supergravities.

In D = 4 the global symmetry group of the ungauged theory is G = SL(2) x SO(6,n),
where n denotes the number of vector multiplets. This group also organizes the gaugings
since the deformation parameters foarnvp and &,ps are tensors under G (they are explicitly
defined below). These tensors are the irreducible components of the embedding tensor.
In terms of them the bosonic Lagrangian and the Killing spinor equations are presented,
the consistency constraints which they have to satisfy are explained and solutions to these
constraints are discussed. In particular the SU(1, 1) phases that were introduced by de Roo
and Wagemans to find ground states with non-vanishing cosmological constant [fi, B,
are identified as parameters incorporated in f,a/nyp. In the same manner the parameters
that correspond to three-form fluxes in compactifications from IIB supergravity [[L3—[L6]
are identified. Also the gaugings that originate from Scherk-Schwarz reduction from D =5
are included in our formulation [RY). In addition, there are various other gaugings that
have not yet been discussed in the literature, in particular all gaugings with both forrnp
and &,js non-zero are novel.

Analogous to the four dimensional case the general five dimensional gauged N = 4
supergravity! is worked out by applying the ideas of B3, where the corresponding gauged
maximal supergravity was presented. In D = 5 the irreducible components of the embed-
ding tensor are tensors firnp, Epnv and €y, which are tensors under the global symmetry
group SO(1,1) x SO(5,n). The first account of the ungauged N = 4 supergravity in D =5
was given in [B0], where also the first gauging of the theory was already considered. Those
gaugings where the gauge group is a product of a semi-simple and an Abelian factor were

!We denote by N = 4 the half-maximal supergravity, although in five spacetime dimensions this theory
is sometimes referred to as N = 2.



already presented in [BI]], examples of this type were already known for a while [BJ. Also
some non-semi-simple gaugings were already constructed [R9]. Our presentation incorpo-
rates all these known gaugings and also includes new ones.

In former descriptions of D = 5 gauged supergravities the vector fields that are not
needed as gauge fields were dualized into two-form fields to make the theory consistent
B1-B7]. This makes the field content of the theory dependent on the particular gauging
and makes it difficult to formulate the general gauged theory in a covariant way. It was
shown in 23] that one can deal with this issue by introducing both the vector fields and all
their dual two-form fields as off-shell degrees of freedom and couple them via a topological
term such that their duality equation results from the equations of motion. The same
concept is used here to describe the general five dimensional gauged theory.

The gauged N = 4 supergravities in five dimensions are naturally embedded into the
four dimensional ones by dimensional reduction and we make this relation explicit within
this paper. Noteworthy, the five dimensional gaugings are parameterized in terms of three
tensors fynp, &y and &y while the four dimensional ones are parameterized in terms
of two tensors foprvp and &qps only. Thus with decreasing spacetime dimension one finds
not only a larger duality group but also a more uniform description of the deformations.
This is the typical picture of dualities in string theory where dimensional reduction relates
theories with different higher-dimensional origin.

The paper is organized as follows. In section [] we present the general four dimensional
theory. We give its bosonic Lagrangian and its Killing spinor equations, discuss the con-
sistency constraints on the deformation parameters, and describe examples of gaugings,
including those known from the literature. In section f] the five dimensional theories are
discussed analogously. Eventually, having both general gauged theories at hand, their em-
bedding induced by a circle reduction is given. For completeness, we sketch the analogous
embedding of the D = 4 into the D = 3 gaugings in the appendix.

2. Gauged N = 4 supergravities in D =4

The gaugings of N = 4 supergravity in four spacetime dimensions are parameterized by
two real constant tensors foynp and £,37. These are tensors under the global on-shell
symmetry group SL(2) x SO(6,n), and a = 1,2 and M = 1,...,6 + n are the respective
vector indices. In the following section the Lagrangian of the theory is given in terms of
these tensors. However, foarnvp and &,ar can not be chosen arbitrarily, the consistency
conditions that they have to obey are discussed in section .3

2.1 Lagrangian and field equations

The N = 4 supergravity multiplet contains as bosonic degrees of freedom the metric, six

massless vectors and two real massless scalars. The corresponding supergravity theory has
a global SL(2) x SO(6) symmetry [J] which is realized only on-shell. The scalar fields con-



stitute an SL(2)/SO(2) coset?. Coupling this theory to n vector multiplets, each containing
one vector and six real scalars, yields an N = 4 supergravity with global on-shell symmetry
group G' = SL(2) x SO(6,n) [[]. This is the theory whose deformations we want to study
here for arbitrary n € N.

For the vector fields of the theory one can choose a symplectic frame such that the
subgroup SO(1,1) x SO(6,n) of G is realized off-shell. The electric vector fields A,
(M =1,...,6+n) then form a vector under SO(6,n) and carry charge +1 under SO(1,1).
Their dual magnetic vector fields 4, form an SO(6,n) vector as well but carry SO(1,1)
charge —1. Together they constitute an SL(2) vector 4, = (A4,M*, 4,7)3.

The scalar fields form the coset space G/H, where H = SO(2) x SO(6) x SO(n) is the
maximal compact subgroup of G. The SL(2)/SO(2) factor of this coset can equivalently
be described by a complex number 7 with Im(7) > 0 or by a symmetric positive definite
matrix M,3 € SL(2). The relation between these two descriptions is given by

1 I7|? Re(r) s 1 1 — Re(7)
Mop = Im(7) <Re(7_) 1 ) ; M ﬁ_m (—Re(T) 72 > ’ (2.1)

where M is the inverse of M. The SL(2) symmetry action on M,g

b
M — gMg" g= (Z d) € SL(2), (2.2)

acts on 7 as a Mobius transformation 7 — (a7 +b)/(cT + d).

The SO(6,n)/SO(6) x SO(n) factor of the scalar coset is described by coset represen-
tatives Vjr® and Vy™ where m =1,...,6 and a = 1,...,n denote SO(6) and SO(n) vector
indices, respectively. The matrix V = (Vy™, Vas?) is an element of SO(6,n), i.e.

nun = —Vu"VN" + Vu"VN, (2.3)

where nyn = diag(—1,-1,—-1,—1,-1,—1,+1,...,+1) is the SO(6,n) metric. Global
SO(6,n) transformations act on V from the left while local SO(6) x SO(n) transformations
act from the right

V — gVh(z), g € SO(6,n), h(z) € SO(6) x SO(n) . (2.4)

Analogous to M,s this coset space may be parameterized by a symmetric positive definite
scalar metric M = VW', explicitly given by

Myn = Vyu*Vn* +VumVn™. (2.5)

’In the literature the symmetry group is usually denoted by SU(1,1), however, we prefer to treat it
as SL(2) which is of course the same group but with different conventions concerning its fundamental
representation.

3Here and in the following we use indices a, 3, ... = +, — for SL(2) vectors. The embedding of the off-shell
symmetry group SO(1, 1) into SL(2) defines a basis for these vectors and thus components v* = (v, v7)
and ve = (v4,v—). For the epsilon tensor e, we use €4 = et~ = 1 which yields e,€®? = 62,



Its inverse we denote by M™Y. Note that each of the matrices Mysn, Vi™ and Vp ¢ alone
already parameterizes the SO(6,n) part of the scalar coset.

In order to later give the scalar potential we also need to define the scalar dependent
completely antisymmetric tensor

MMNPQRS = €mnopqr VMmVNnVPOVQpVRqVST . (26)

The ungauged theory contains the metric, electric vector fields and scalars as free
fields in the Lagrangian, while the dual magnetic vectors and two-form gauge fields are
only introduced on-shell (this is the description we choose). The latter come in the adjoint
representation of G and since G has two factors there are also two kinds of two-form gauge
fields, namely BN = BL]‘V/IN} and Bﬁg = B,(f;ﬁ) = (B}5, B, , B, ). For the general
description of the gauged theory all these fields appear as free fields in the Lagrangian
B7). For the magnetic vectors this is necessary because they can appear as gauge fields in
the covariant derivative while the two-forms in turn are required in order to consistently
couple the vector fields. Some of the vector fields that are not needed in the gauging
become Stueckelberg fields for the two-forms.

Neither the magnetic vector fields AMM ~ nor the two-form gauge fields have a kinetic
term and via their first order equations of motion they eventually turn out to be dual to
the electric vector fields AMM T and to the scalars, respectively. Thus the number of degrees
of freedom remains unchanged as compared to the ungauged theory.

The gauged supergravities are parameterized by two G-tensors {onr = (§4-07,€— ) and
famne = (f+ymnp, f-mnp) With foyrnve = faimnp)- One should think of these tensors as
generalized structure constants of the gauge group. They have to satisfy certain consistency
constraints to be introduced later. The following combinations occur regularly

OaMNP = faMNP — fa[N np|M >

. 3
famne = farnp — Eam MPIN — 3 SaNTIMP - (2.7)

In addition we use a gauge coupling constant g which is actually dispensable by rescaling
farine — g7 fanmnp and Eanr — g~ ' €anr. Nevertheless it is convenient to use g to keep
track of the order in the gauge coupling.

We can now present the bosonic Lagrangian of the general gauged theory?

Lpos = Lyin + Etop + Epot . (28)
It consists of a kinetic term
1 1 1
—1 MN *
n = — — (D, M, DFM — — (D D* 2.

1 1
— Z Im(’T) MMNHHVM+HMVN+ + g Re(T) "MN euypAH;Ll/M—i_Hp)\N—i_ ’

4Qur space-time metric has signature (=, 4+, +,+) and the Levi-Civita is a proper space-time tensor, i.e.

0123 -1
€0123 = €, € =—e .



a topological term for the vector and tensor gauge fields [27]

{£+M77NPA;]‘L4A1]/V+8;)A§+ - (flMNP + 25—N77MP) Aﬂ”’A,ﬂV*@pAf_ (2.10)
g ; A — g R
> faMNRfﬁPQRAyaA,],V+A56A§ + 16 @JFMNPG),MQRB;\,CPB?)\

1=

(O_mnpBh + & uB; + & uB) (20,43 - gfaQRMA,(‘}?O‘Af_)} ,
and a scalar potential

e71£pot - _92i
2
g 1 2
- _ 16{faMNPfﬁQRsMO‘ﬁ [5 VM@ NER )y PS <§ yMQ _ MMQ) nNRnPS]

4
~9 farmnpfaQrse®® MMNPRRES 4 3££”£éVM“5MMN} . (2.11)

The covariant derivative D), appearing in Ly, acts on objects in an arbitrary representation

of G =SL(2) x SO(6,n) as
DM = VM — gAMMa@aMNPtNP + gAMM(aeﬁ)’yfq/Mtaﬁ, (2.12)

where V, contains the spin-connection and ¢{yp and t,g are the generators of the global
symmetry group®. Explicitly one finds for the scalar fields

Dy Meap = 0uMap + gAyvg(aMMﬁ)“f + gAfy%EMEé(aemMﬁ)w ;
D, Myn = 0, Mpyn + QQAuPaeaP(MQMN)Q . (2.13)

Note that Im(7)~2(D,7)(D#7*) = —4(D,Map)(D*M®P), ie. the kinetic term for T can
equivalently be expressed in terms of M,g.

The full covariant field strengths of the electric and magnetic vector fields are given
by"
M+ _ M+_ 7 My Nay P+, 949 M NP , 9+ Mp++ | 9¢ M p+-—
M = 20,407 =g fanp™ AR~ Ay +§®— NPBuy +§§+ By +§§— B
_ _ ; -9 g -— 9 -
Hu~ =20, A" —g fanp™ AN AT =S 0.\ p BT+ € VBT + D6 MBI
(2.14)

°In the vector representation the symmetry generators have the form (tarn)p® = 6&177]\,]1) and (tag),° =
(5?a65),y, respectively.

5Note that the indices + and — on the vector fields and on their field strengths distinguish the electric
ones from the magnetic ones and thus do not indicate complex self-dual combinations of the field strengths
as is common in the literature. We hope note to confuse the reader with that notation.



Only Hﬁ/,[ﬂ' enters the Lagrangian, but Hﬂ/{,_ appears in the equations of motion. To express
the latter it is also useful to define the following combination of the electric field strengths

M+ — M+
gy,l/ - H;u/ )

G M- _ —1,MN OLxin
% n €uvp aHN+
pA

1
= =3 €p Im(T)MMN

nnpH7T P — Re(r)H T (2.15)

The importance of G, = becomes clear in the ungauged theory obtained from (R-§) in
the limit ¢ — 0. In this limit the topological term and the potential vanish and HWMJr
and HWM ~ reduce to Abelian field strengths. Since the magnetic vectors and the two-
form gauge fields only appear projected with some combination of foynp and £,ps they
completely decouple from the Lagrangian at ¢ = 0. The equations of motion for the electric
vector fields then take the form 9,G, ™~ = 0. In the ungauged theory magnetic vector
fields are introduced by hand via 'Hﬁ/{,_ = g{){— and gMe = (QM+,QM_) and HM® are
on-shell identical.

Turning back to the gauged theory one finds for general variations of the vector and
two-form gauge fields that the Lagrangian varies as [R7]

_ 1 _ _ _
e 15£b05 = gg (@,MNPAB!]L\LP + ffMAB;rl, + 5+MAB:V+) el <H2/>I\ - gﬁ )
1 _
+ 5(5142“) (g Ean Mo, DM MY 4 g O ap™ My D' MOT — Py Dygé\; )
1
+ 5(54}”‘) (g e M_ DFMPT 4 g O_np" MyoDFMOY + Py DVQ,])V;F)
+ total derivatives, (2.16)

where we used the “covariant variations”
MN _ MN a[M ¢ 4NIB
ABW = 5BW — 2¢, A[ 5Ay] ,
ABSS = 5B + 2y A 5 A0 (2.17)

[ V]

Equation (2.16) encodes the gauge field equations of motion of the theory. Variation of
the two-form gauge fields yields a projected version of the duality equation H%i = Q%*
between electric and magnetic vector fields. From varying the electric vector fields one
obtains a field equation for the electric vectors themselves which contains scalar currents
as source terms. Finally, the variation of the magnetic vectors gives a duality equation
between scalars and two-form gauge fields. To make this transparent one needs the modified
Bianchi identity for H%+ which reads

g M 3) PQ M M (3)+
Dy, MYl =2 (0-MpgME)? + e M I + e MHET) (2.18)
where the two-form field strengths are given by

p]

nvp ol
Hfﬁgﬁ = 33[ B+ 6mun A[ @0, AN+ 0(g), (2.19)



up to terms of order g.

Thus we find that the tensors foanvp and &,ar do not only specify the gauge group
but also organize the couplings of the various fields. They determine which vector gauge
fields appear in the covariant derivatives, how the field strengths have to be modified,
which magnetic vector fields and which two-form gauge fields enter the Lagrangian and
how they become dual to electric vector fields and scalars via their equation of motion.
However, consistency of the entire construction above crucially depends on some particular
quadratic constraints that foanvp and £, have to satisfy and which are presented in the
next subsection.

In principle one should also give the fermionic contributions to the Lagrangian and
check supersymmetry to verify that (.§) really describes the bosonic part of a supergrav-
ity theory. We have obtained the results by applying the general method of covariantly
coupling electric and magnetic vector gauge fields in a gauged theory [R7] to the particular
case of N = 4 supergravity. This fixes the bosonic Lagrangian up to the scalar potential.
The latter is also strongly restricted by gauge invariance, only those terms that appear in
(2.11)) are allowed. We obtained the pre-factors between the various terms by matching the
scalar potential with the one known from half-maximal supergravity in three spacetime di-
mensions [], see appendix [Al. The general theory then was compared with various special

cases that were already worked out elsewhere [{, B, [Ld, [[3-[L6, S, B9, B]], see section R.4.

2.2 Quadratic constraints and gauge invariance

We have seen that the tensors (o and faoynp = fomnvp) Parameterize the possible
gaugings of the theory. These are constant tensors (their entries are fixed real numbers)
for which we demand in addition the following set of consistency constraints

& o =0,
P _
§afpypun =0,

3farmin forg)™ + 26 fonrg =0,

e (€8 fapain + Earéan) =0,
=0.

P (famnrfarg™ — €8 farprpnoin) — Eapm INPQIs + Ealp fQiniNs) (2.20)

These quadratic constraints guarantee the closure of the gauge group, as will be explained
below. The deformation of the theory is consistent if and only if these constraints are
satisfied. They are invariant under the global symmetry group: given one solution one can
create another one by a GG action. But all solutions generated in this way describe the
same gauged supergravity. This is obvious for those G transformation that belong to the
SO(1,1) x SO(6,n) off-shell symmetry since the entire construction of the last section was
formally invariant under these transformations, i.e. these transformations correspond to a
linear field redefinition that does not mix magnetic and electric vector fields. In contrast,
two solutions of the constraints which are related by a general SL(2) transformation yield
two theories which at first sight look rather different but are related by a symplectic
transformation which rotates electric into magnetic vector fields and vice versa.



It is convenient to define a composite index for the vector fields by AHM = AHM @, and
a symplectic form Qs by

Qv = QmanNg = TMNEas s QMN — QMaNB — nMNeaﬁ, (2.21)
The symplectic group Sp(12 + 2n) is the group of linear transformations that preserve
Qan. An arbitrary symplectic rotation of the theory gives a Lagrangian that is not yet
contained in the description above but which describes the same theory on the level of
the equations of motion. All possible Lagrangians of gauged N = 4 supergravity are thus
parameterized by {anr, farmnp and an element of Sp(12 + 2n).

In order to illustrate the meaning of the quadratic constraints (2.2() we first consider
the case of purely electric gaugings for which &,37 = 0 and f_p;yp = 0. In this case only
electric vector fields AMM T enter the Lagrangian. We then find f, 5, N = f+MnNQ n9F to
be the structure constants of the gauge group and the constraint (R.2() simplifies to the
Jacobi identity

frrpanFapgt =0, (2.22)

Due to this identity the topological term L}, vanishes in this case. Note that the SO(6,n)
metric 7y is used to contract the indices in (.29), while in the ordinary Jacobi identity
the Cartan Killing form occurs. Also the indices M, N, ... run over 6 4+ n values while the
gauge group might be of smaller dimension. These issues will be discussed in section R.4.

In the general case of an arbitrary solution of (R.2() we can read off the gauge group
generators from the covariant derivative (R.12). For an object in the vector field represen-
tation we want

Dy AM =V, MM 4 g AN XppM AT, (2.23)
which yields
Xmn” = Xprang™? (2.24)
= 5 forun® + 5 (651 8 € — 68 5% Eonr — ymaan € + o 68 Eoar ™)
Note that these objects satisfy
X 2Qp0 =0, Xmn2Qp)0 = 0. (2.25)

It was found in [27] that the last of these equations is crucial for consistency of the gauged
theory. It is this linear constraint that demands the gauge group generators to be param-
eterized by farmrnp and . according to (R.24)).

An infinitesimal gauge transformation is parameterized by AM(z) = AM(z) and acts

M

on objects z/*! and z ¢ in the (dual) vector field representations as

§2M = —g AN XppMa®, S = g AN X" ap (2.26)



where g is the gauge coupling constant. This defines the gauge group Gy C G C Sp(12+2n).
Treating the generators Xy " = (Xm) NP as matrices we find the following commutator
relations to be satisfied

(X1, Xn] = =X Xp, (2.27)

i.e. the gauge group Gy is closed. Some computation reveals that the last equation is
equivalent to the quadratic constraint (.20). Therefore the quadratic constraint is a gen-
eralization of the Jacobi identity (R.23) guaranteeing the closure of the gauge group. Fur-
thermore according to (R.27) the generators X ~7 take the role of generalized structure
constants. However, they are only antisymmetric in M, N after having contracted with
Xp. The fact that X N)P is in general not vanishing explains the need for the two-form
gauge fields in the generalized field strengths (B.14). The ordinary field strength would not
transform covariantly under gauge transformations AM<(z).

The two-form gauge fields B%N and Bﬁg are equipped with tensor gauge transforma-
Eﬂ/[ N = ELMN] and Efjﬁ = EELaﬁ ). Under general vector and tensor
gauge transformations the gauge fields transform as

tions parameterized by

5AM+:D“AM+_g@ MNP:NP_gg M:++_g£ Mo+—
B 9 7~ K -

25t TmoTohT T
§AM= —p AM- 9o M =NP_ 9 Mg—— I Mzi-
pw = Pu 5 7+ NP=p 55— S oS+ =
ABNMN = 2D, E)N — 2e,50° 1M GNP
ABg) = 2D Z0 + 2y AM @GN (2.28)

where we used the covariant variations of the two-form gauge fields (2.17). Under these

gauge transformations the Lagrangian (P.§) is invariant. The only non-vanishing commu-

tator of these gauge transformations is”

[6A1’6A2] = 5A + 5§ ) (2.29)
where
AM = gXNpMAﬁ/ AL
= oM N oM N
2NN = cas (AT DAY - A5 DAY

=57 = = (A7 DADY = A DAY (2.30)

In the action on objects that do not transform under tensor gauge transformations (like
field strengths, scalar fields) this algebra coincides with (R.27).
2.3 Killing spinor equations

So far we have only considered bosonic fields and we do not intend to give the entire
fermionic Lagrangian nor the complete supersymmetry action. They can e.g. be found in

"In the Lagrangian the two-form gauge fields only appear under a particular projection with farrnp
and £, and the gauge transformation on them only close under this very projection [Rd].

,10,



SO(2) charges SU(4) rep. SO(n) rep.
gravitini ¢/, —3 4 1
spin 1/2 fermions +3 4 1
spin 1/2 fermions A% +1 4 n

Table 1: H-representations of the fermions.

the paper of Bergshoeff, Koh and Sezgin [J] for purely electric gaugings when only fiarnp
is non-zero, and we have chosen most of our conventions to agree with their work in this
special case®. In particular all terms of order ¢°, i.e. terms of the ungauged theory, can be
found there.

Our aim in this section is to give the Killing spinor equations of the general gauged
theory, i.e. the variations of the gravitini and of the spin 1/2 fermions under supersymme-
try. Those are required for example when studying BPS solutions or when analyzing the
supersymmetry breaking or preserving of particular ground states.

All the fermions carry a representation of H = SO(2) x SO(6) x SO(n) which is the
maximal compact subgroup of G. Instead of SO(6) we work with its covering group SU(4) in
the following. The gravity multiplet contains four gravitini 1/12 and four spin 1/2 fermions
x" and in the n vector multiplet there are 4n spin 1/2 fermions \*, where i = 1,...,4
and a = 1,...,n are vector indices of SU(4) and SO(n). The SO(2) = U(1) acts on the
fermions as a multiplication with a complex phase exp(igA(x)), where the charges ¢ are
given in table [I.

As usual we use gamma-matrices with

(T, T} =20, (T,)F = 9Ty, [5 =il Tl (2.31)

All our fermions are chiral. We choose wi and A% to be right-handed while x* is left-handed,
that is

L5y, =+, Tsx' = —x', 5N = 4% (2.32)

Vector indices of SU(4) are raised and lowered by complex conjugation, i.e. for an ordinary
SU(4) vector v; = (v')*. However, for fermions we need the matrix B = i['sI's to define
#; = B(¢")*. This ensures that ¢; transforms as a Dirac spinor when ¢’ does. The
complex conjugate of a chiral spinor has opposite chirality, e.g. x; = B(x")* is right-
handed?. For ¢; = (¢")'Ty we define the complex conjugate by ¢* = (¢;)* B which yields

8The structure constants funp in @] equal minus frunp.

9Right-handed spinors can be described by Weyl-spinors ¢, and left-handed ones then turn to conjugate
Weyl-spinors ¢ ;. Here A and A are (conjugate) SL(2, C) vector indices. In the chiral representation of the
Gamma-matrices

"
F;L: 0o 5 I's = Lo ) B =il'sI'; = e ’
o, 0 0 -1 —€0

where € is the two-dimensional epsilon-tensor and o, = (1,¢), o = "0, = (—1,J) contains the Pauli

matrices, we find right-handed spinors to have the form ¢ = (¢A,0)T while left-handed ones look like
é = (0,64)T. Thus we have x* = (0, Xi‘;)T and its complex conjugate is given by x; = (x#,0)T where the

*

Weyl-spinors are related by xi* = eAB(X%) .
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¢ix' = X'¢i = (0'x1)" = (Xi¢')" N
An SO(6) vector v can alternatively be described by an antisymmetric tensor v¥7 =
vlid) subject to the pseudo-reality constraint

g 1
vij = (v7)" = §€ijklvkl- (2.33)
We normalize the map v™ — v% such that the scalar product becomes

1 g
"™ = §eijklvzjwkl . (2.34)

We can thus rewrite the coset representative Vy;™ as V¥ such that the equations (P.3)
and (R.6) become

1 3
NMN = —§€ijleM”VNkl + VYN,
MyiNPQRS = — 21 €ijps €klgt Emnru V[MijVNlePmnVquVRTSVS]w . (2.35)

The scalar matrices V% and Vyr® can be used to translate from SO(6,n) representations
under which the vector and tensor gauge fields transform into SO(6)xSO(n) representations
carried by the fermions. They are thus crucial when we want to couple fermions. For the
same reason it is necessary to introduce an SL(2) coset representative, namely a complex
SL(2) vector V, which satisfies

Mas = Re(Va(Vs)"). (2.36)

Under SO(2) V, carries charge +1 while its complex conjugate carries charge —1.10
When gauging the general theory all partial derivatives are replaced by covariant
derivatives @ — D and all Abelian field strengths by covariant ones FM+ — HM+. More-
over one has to add the topological term and the scalar potential to the Lagrangian as we
have described in section R.1. In the fermionic sector the only additional change that has
to be made in the Lagrangian is the introduction of fermionic mass terms and fermionic
couplings, all of order ¢g'. For example those terms that involve the gravitini read

B 1 . , 1 .o ' .
e Lo mass = ggAlf Y T 4y — gZQA;J Yui TV X5 +ig A2’ ¥, TH Af +hee.,  (2.37)

where Azij = Agij ), Agj and Asg g’ are the so called fermion shift matrices which depend on
the scalar fields.
Also the supersymmetry transformations of the fermions have to be endowed with

corrections of order g', namely
5 i _ D i L. * ij Marupr 2 AZJF
¢M =2 n€ + Zl (VC\!) VM gup n€i — gg 11w
. 1 g 4 )
5" = i€V, (D, V) THe + 5 VeV grloTmve; — 19 AYe,

) - 1 ) o
SN = 2iV,M (D, V) THe; — 7 VaVa GIOTH e +2ig Agas' € (2.38)

10The complex scalars ¢ and 9 in [H] translate into our notation as V4 = ¢, V_ = i¢ and /¢ = it™.
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where the same matrices A; and Ay appear as in the Lagrangian. There are also higher
order fermion terms in the supersymmetry rules, but those do not get corrections in the
gauged theory. We wrote the vector field contribution to the fermion variations in an SL(2)
covariant way. Using the definition (R.15) one finds

2
= (V)T VM HLTT (1 - Ts)

} ) :
IVaVur G T = (V) VY <H,%+ b WAHM”A) v

1
iVaVMag%aF,uu _ (V_*)fl VMa <H%+ _ §i€ﬂyp)\HM+p>\> INZS
= (V- VM H T (1 4+ T5) (2.39)
Explicitly, the fermion shift matrices are given by
Aij — aB (Va)*v[lgl]MVN [ik]VP[jl] fBMNP :

1 feY i j 3 a ij
Ay =« ﬁvav[kl]MVN[k]VPW]fﬁMNP + 3¢ FVaVuesM

. . 1 .
Az oi? = PV IV VY g VeI fann” — 1524 VIV M - (2.40)
Supersymmetry of the Lagrangian forces them to obey in particular!!
1 . - 1 . - 1 - 1
gfvl’mljk— §Agf,42jk— §A2aﬁA2alk =-15V, (2.41)

where the scalar potential V' appears on the right hand side. The last equation is indeed
satisfied as a consequence of the quadratic constraints (R.20).

If we have chosen foarnp and £,p7 such that the scalar potential possesses an extremal
point one may wonder whether the associated ground state conserves some supersymimetry,
i.e. whether €' exists such the fermion variations (R.3§) vanish in the ground state. The
usual Ansatz is € = ¢’ &, where ¢’ is just an SU(4) vector while ¢ is a right-handed Killing

spinor of AdS (V < 0) or Minkowski (V' = 0) space, i.e.'2

1
Dy& =g\ =35V IuBE . (2.42)

The Killing spinor equations §1¢ = 0, dx* = 0 and §A% = 0 then take the form

Agj=\[—7Vd", g Ay =0, Agj'q? = 0. (2.43)

Due to (R-41]) the first equation of (R.43) already implies the other two.

2.4 Examples

In this section we give examples of tensors foarnp and s that solve the constraints (2.2(),
therewith giving examples of gauged N = 4 supergravities. We recover those gaugings that
were already discussed in the literature but also obtain new ones.

"This equation is obtained by considering terms of the form g*v,I'"€ in the variation 6L.
12Consistency of the AdS Killing spinor equation can be checked by using Ruvpy = f§g2Vg#[ngV,
[, BI; B* = =Ty, and [Dy, DuJé = =3 R Thak.
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2.4.1 Purely electric gaugings

It can be shown that as a consequence of the constraints (R.2() for every consistent gauging
one can perform a symplectic rotation such that only the electric vector fields serve as
gauge fields 7. In the maximal supersymmetric theory, i.e. for N = 8, this statement
can even be reversed, i.e. every gauging (defined by some embedding tensor similar to our
famnp and E,pr) that is purely electric in some symplectic frame is consistent (i.e. solves
the quadratic constraints for the embedding tensor). This is different in N = 4 where a
nontrivial quadratic constraint remains also for purely electric gaugings.

In the particular electric frame we have chosen — the one in which the electric and
magnetic vector fields each form a vector under SO(6,n) — the purely electric gaugings are
those for which f_j;nyp = 0 and &, = 0, thus only fyp/nvp is non-vanishing. This is the
class of theories that were constructed by Bergshoeff, Koh and Sezgin [J]. As mentioned
above the quadratic constraint in this case simplifies to the Jacobi identity (2.29), which
may alternatively be written as

Ferpa® fenp = 0. (2.44)

This is a constraint on f unt = fem NQnQP only, but in addition the linear constraint
frmnp = frunp) has to be satisfied, such that the SO(6,n) metric nyy enters non-
trivially into this system of constraints. The dimension of the gauge group can at most be
6 + n, which is obvious in the case that we consider here (M =1,...,6 + n), but which is
also the general limit for arbitrary gaugings.

We first want to consider semi-simple gaugings. Let f;;¢ be the structure constants
of a semi-simple gauge group Go, where a,b,c = 1...dim(Gy), dim(Gy) < 6 + n, then
Nap = facd fpa® is the Cartan-Killing form and we can choose a basis such that it becomes
diagonal, i.e.

Nap = diag(1,...,—1,...). (2.45)
N
P q

We can only realize the gauge group Gy if we can embed its Lie algebra gg = {v®} into the
vector space of electric vector fields such that the preimage of 1y agrees with 7y, up to
a factor. This puts a restriction on the signature of 74, namely either p < 6, ¢ < n (case
1) or p < mn, ¢ <6 (case 2). To make the embedding explicit we define the index M with
range M = 1...p,7...6 +¢ (case 1) or M=1...¢,7...6+p (case 2). We then have
(M) = £(1ap) and we can define

(fommp) = (fave) s all other entries of fi/np zero, (2.46)

where fupe = fabdﬁdc- Since G is semi-simple f,p. is completely antisymmetric and thus
frmnp satisfies the linear and the quadratic constraint. For n < 6 the possible simple
groups that can appear as factors in Go are SU(2), SO(2,1), SO(3,1), SL(3), SU(2,1),
SO(4,1) and SO(3,2). For larger n we then find SU(3), SO(5), Gor), SL(4), SU(3,1),
SO(5,1), etc.
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Apart from these semi-simple gaugings there are various non-semi-simple gaugings that
satisfy (R.44]). Of those we only want to give an example. We can choose three mutual
orthogonal lightlike vectors aps, bys and cps and define fiprnp to be the volume form on
their span, i.e.

f+MNp = a[MbNCP] . (2.47)

The vectors have to be linearly independent in order that fiasnp is non-vanishing. The
quadratic constraint is then satisfied trivially since it contains 7 which is vanishing on
the domain of f,;np. The gauge group turns out to be Gy = U(1)3. We can generalize
this construction by choosing fiaynp to be any three form that has as domain a lightlike
subspace of the vector space {v*}. All corresponding gauge groups are Abelian.

None of the purely electric gaugings can have a ground state with non-vanishing
cosmological constant since the scalar potential (R.11]) in this case is proportional to
M+ = Im(7r)"!. Therefore de Roo and Wagemans introduced a further deformation
of the theory [f]. Starting from a semi-simple gauging as presented above they introduced
a phase for every simple group factor as additional parameters in the description of the
gauging. In the next section we will explain the relation of these phases to our parameters
farmnp and show how these theories fit into our framework.

2.4.2 The phases of de Roo and Wagemans

We now allow for fiynp and f_pnp to be non-zero but keep 55/[ = 0. The quadratic
constraint (B.2() then reads

faR[MNfﬁPQ}R =0, eaﬁfaMNRfBPQR =0. (2.48)

To find solutions we start from the situation of the last section, i.e. we assume to have some
structure constants farnvp = fiyrvp) that satisfy the Jacobi-identity fR[MQpr}R =0. In
addition we assume to have a decomposition of the vector space {v™} into K mutual
orthogonal subspaces with projectors P;p, i = 1... K, i.e. such that for a general vector

vy we have

K
vy =Y PNy, nMP PN PipQ = for i+ j. (2.49)
i=1
Furthermore this decomposition shall be such that the three form fy;nyp does not mix
between the subspaces, i.e. it decomposes into a sum of three-forms on each subspace

K
funp = Z f](\i[)Npa f](\f[)NP = IPiMQ ]PiNR]PiPS fQRS . (2-50)
i=1

This implies that the gauge group splits into K factors Gg = G x G?) x ... x GE) with
f]gfl)N p being the structure constant of the i-th factor, each of them satisfying the above
Jacobi-identity separately. Solutions of the constraint (R.4§) are then given by
K
favnp = Z w&i) f](‘fI)NP, w&i) = (wgf), w(j)) = (cos oy, sin ), (2.51)
=1
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where the wg ) could be arbitrary SL(2) vectors which we could restrict to have unit length
without loss of generality. The o; € R, i =1... K, are the de Roo-Wagemans-phases first
introduces in [E] In the following we want to use the abbreviations ¢; = cos «;, s; = sin ;.
If K =1 we find fyynp and f_arvp to be proportional. This case is equivalent to the
purely electric gaugings of the last section since one always finds an SL(2) transformation
such that wl becomes (1,0).

For a semi-simple gauging as described in the last section there is a natural decom-
position of {v} into mutual orthogonal subspaces and K equals the number of simple
factors in Gg. But the above construction also applies for non-semi-simple gaugings.

We have mentioned above that every consistent gauging is purely electric in a particular
symplectic frame. Considering a concrete gauging it is therefore natural to formulate the
theory in this particular frame, and also the two-form gauge fields then disappear from
the Lagrangian. For those gaugings defined by (2.5]) we may perform the symplectic

transformation
K K
ANt = E e PMy AT+ E siPMy ANV
i—1 i=1

K K
A}]y_ = — Z S; ]PZ'MN AQH_ + Z C; IPZ'MN Aﬁf— , (252)
i=1 i=1

such that the covariant derivative depends exclusively on 21{)4 +
D, =V, —gAM i Ftyp. (2.53)

Note that the new electric vector fields flﬁ/[ * do not form a vector under SO(6,n), but
transform into zzlﬁ/[ ~ under this group. The Lagrangian in the new symplectic frame reads

1

1 1
-1 MN *
= - - (D,M DFM - ——(D D#
1 ~ - 1 S
= G DN F TP = SRy ST = g7V (2.54)
and the scalar potential (R.11]) takes the form [g]
1 s () ()
—1 2 j
V= o Im(7) 'Zl (cicj — 2Re(7)cis5 + 7] sisj) fAZNPfQJRS
7/7-7:
1 2
% {g MMQ ) NRyPS | (§ gMQ _ M@y, NR, PS
L - () ()
i ’ MNPQRS
- ”2_:1 cisj frinpfohgMMNTORS, (2.55)

The kinetic term of the vector fields involves the field strength

j:MVMJr = 28[“AV]M+ — ngpMA[“N+AV}P+ y (256)
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and the scalar dependent matrices Zy;n and Rpsny which are defined by

K
_ 1
(- HMN = T (7) Z (cicj — 2Re(T)eisj + |7[%sis;) PN pP; N g MPe
1,7=1

K
_ 1
RMN(Z 1)NP = Z [—CiSj + Re(r)(sisj — CiCj) + ’T‘QSZ‘C]‘] ]PZ‘MN]P]‘PRMNR .
ij=1
(2.57)

In general, when going to the electric frame for an arbitrary gauging there is still a topo-
logical term for the electric fields of the form AAJA + AAAA [4d], but here this term is
not present.

Comparing the scalar potential V' for non-vanishing phases a; with that of the last
section we find it to have a much more complicated 7 dependence and one can indeed find
gaugings where it possesses stationary points [[I0, RJ].

2.4.3 1IB flux compactifications

We now want to consider gaugings with an origin in type IIB supergravity. N = 4 su-
pergravity can be obtained by an orientifold compactification of 1IB [[I], [[J] and in the
simplest T /7y case this yields the ungauged theory with n = 6, i.e. the global symmetry
group is G = SL(2) x SO(6,6). Here, the SL(2) factor is the symmetry that was already
present in ten dimensions and SO(6, 6) contains the GL(6) symmetry group associated with
the torus 7. The compactification thus yields the theory in a symplectic frame in which
SL(2) x GL(6) is realized off-shell. Turning on fluxes results in gaugings of the theory that
are purely electric in this particular symplectic frame. This is the class of gaugings to be
examined in this subsection.

An SO(6,6) vector decomposes under GL(6) = U(1)xSL(6) into 646. The vector fields
AHM @ gplit accordingly into electric ones AuAO‘ and magnetic ones A, A“ where A =1...6
is a (dual) SL(6) vector index. The SO(6,6) metric takes the form

I T

NAT TIA 0 dy
= = . 2.58
"MN (nAF 77AF> (511} 0) ( )

The gauge group generators (£.24)) split as Xye = (Xaa, XAa) and a purely electric
gauging satisfies X, = 0. The tensors {4y and faarnp decompose into the following
representations
(2,12) — (2,6) ® (2,6),
(2,220) — (2,6) ® (2,20) & (2,84) & (2,84)  (2,20) @ (2,6) . (2.59)
From (2.24)) one finds that the condition X A, = 0 demands most of these components to

vanish, only the (2,20) and a particular combinations of the two (2,6)’s are allowed to be

non-zero. Explicitly we find for the general electric gaugings in this frame

gaM - (gaAa gaA) — (gaAa 0)5
farinp = (fanrs, faar™, fan'™, fo™™) = (faars, Eua01, 0, 0). (2.60)
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This Ansatz automatically satisfies most of the quadratic constraints (2.2(), the only con-
sistency constraint left is

Jajars &pyw) = 0. (2.61)

Thus for £,pn = 0 we find foary to be unconstrained, i.e. every choice of foars gives a
valid gauged theory. It turns out that foary corresponds to the possible three-form fluxes
that can be switched on. These theories and extensions of them were already described and
analyzed in [[J, [4]. It was noted in [] that not all N = 4 models that come from 7 /Z
orientifold compactifications can be embedded into the N = 8 models from torus reduction
of 1IB, since for the latter the fluxes have to satisfy the constraint fars/fgwaz) = 0.

Searching for solutions to the constraint (2.61)) with £,4 non-vanishing one finds that
the possible solutions have the form

farrs = &aja Ary) or farrs = €7 By &ar &y (2.62)

with unconstraint §aa, Axr = Ajar) and Baa, respectively.
Theories with both fiarnp and €437 non-zero were not yet considered in the literature.
For foumrnp = 0 the remaining quadratic constraints on £, demands it to be of the form

M — 0. Thus for vanishing

Eamr = vowyy, with v, arbitrary and wys lightlike, i.e. wpsw
famnp the solution for &,y is unique up to SL(2) x SO(6, n) transformations. This solution
corresponds to the gauging that can be obtained from Scherk-Schwarz reduction from D = 5
with a non-compact SO(1, 1) twist, which was constructed in [RJ] for the case of one vector
multiplet. This suggests that in certain cases non-vanishing &,5; corresponds to torsion on
the internal manifold. But this does not apply for the IIB reductions in this section since
&an is a doublet under the global SL(2) symmetry of IIB, while a torsion parameter should
be a singlet. We have shown that these theories with non-vanishing £, are consistent
N = 4 supergravities, but their higher-dimensional origin remains to be elucidated.

The list of gauged N = 4 supergravities that were presented in this section is, of course,
far from complete. One could, for example, discuss other orientifold compactifications of
IIA and IIB supergravity, for all of which turning on fluxes yields gauged theories in four
dimensions [13, [[§]. However, the examples discussed were hopefully representative enough
to show that indeed all the various gaugings appearing in the literature can be embedded
in the universal formulation presented above. New classes of gaugings are those with both
farnp and Eqpr non-vanishing. Every solution of the quadratic constraints (2.2() yields
a consistent gauging . For additional examples see [i].

3. Gauged N = 4 supergravities in D =5

In analogy to the four dimensional theory presented in the last section we now describe

the general gauged N = 4 (half-maximal) supergravity in five spacetime dimensions!?.

13Sometimes the half-maximal supergravities in D = 5 are referred to as N = 2 theories. We prefer the
notation N = 4 since they are related to the N = 4 theories in four dimensions via a torus reduction. In
this notation the minimal supergravity in D = 5 is denoted as N = 2.
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The general gauging in D = 5 is parameterized by three real tensors fynp, Evy and
&, taking the role of foprnvp and &,ps from the last section. Our presentation is less
detailed than for the four dimensional theory because for the case £y = 0 these theories
were already presented in the literature [BI]. On the other hand, gaugings with vanishing
funp and &y but non-zero )y have a non-semi-simple gauge group and originate in
generalized dimensional reduction from D = 6 supergravity R9]. Here we complete the
analysis of 9, BI] by including gaugings with all tensors fanp, Evnv and £y non-zero.
We give the complete bosonic Lagrangian and Killing spinor equations and at the end of

this section make contact with the four dimensional theory.

3.1 Quadratic constraints and gauge algebra

The global symmetry group of ungauged D = 5, N = 4 supergravity is G = SO(1,1) x
SO(5,n), where n € IN counts the number of vector multiplets. The theory contains Abelian
vector gauge fields that form one vector Aﬂ/f and one scalar Ag under SO(5,n). Note that
the index M = 1...5 4 n now is a vector index of SO(5,n) while in the last section we
used it for SO(6,n). The vector fields carry SO(1,1) charges 1/2 and —1, respectively, i.e.
1
M_ LM A0 40

64, = §Au , 054, = —Au, (3.1)
where §; denotes the SO(1,1) action. The corresponding algebra generator is denoted t;
while the SO(5,n) generators are ¢ty = tin)- For the representations of the vector gauge
fields these generators explicitly read

Q_ 5@

1
tMNP [MnN]P’ tﬁMN = —5611\\2, tMNOO = 0’ t@OO =1. (32)

The general gauging of the theory is parameterized by tensors funp = fiunp), EMn =
§uny and . They designate the gauge group and assign the vector gauge fields to the
gauge group generators. The general covariant derivative reads

Dy =V, —g Al fuNPtnp — g AL tnp — g AV EN tyn — g A Earty, (3.3)

where the indices are raised and lowered by using the SO(5,n) metric nyn and g is the
gauge coupling constant. In order that the above expression is G invariant we need fa/np
and &7 to carry SO(1, 1) charge —1/2 and £/ to have charge 1. By G invariance we mean
a formal invariance treating the fy;nvp, &y and £y as spurionic objects that transform
under G. However, as soon as we choose particular values for these tensors the global G
invariance is broken and only a local Gy C G invariance is left.

To guarantee the closure of the gauge group and the consistency of the gauging we
need the following quadratic constraints to be satisfied for a general gauging

&M =0, EunéN =0, funpd =0,
3frn fro” = 2funpéq,  EmC fonp =& énp — E € - (3.4)

This implies for example that £ys has to vanish for n = 0 since for an FKuclidean metric
Ny one has no lightlike vectors. In general, however, all three tensors may be non-zero at
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the same time. For the sake of discussing the closure of the gauge group it is convenient to
consider the group action on the vector field representation defined by (B.9). Introducing
the composite index M = {0, M}, i.e. Al/}/‘ = (Ag, Aﬂ/f), we have

Dy AM =V, MM + g AN XppM AT, (3.5)
where the gauge group generators X yn” = (Xa)a” are given by

1
Xunt = —fun® - 577MN€P + 5[113\/[£N] ;o Xuo’ =&, Xon™ = -, (3.6)

and all other components vanish. For the commutator of these generators one finds
(X, Xn] = =X Xp (3.7)

i.e. the gauge group closes and Xpn" itself takes the role of a generalized structure
constant. The closure relation (B.7) is equivalent to the quadratic constraint (B.4).

For gaugings with only fasnp non-zero we see that this tensor is a structure constant
for a subgroup Gy of SO(5,n) that is gauged by using Ai‘f as vector gauge fields. If only
&N is non-zero we find a one-dimensional subgroup of SO(5,7n) to be gauged with gauge
field Ag. And for gaugings with only &/ non-zero one finds a 4 + n dimensional gauge
group SO(1,1) x SO(1,1)3*" where the first factor involves the SO(1,1) of G.

Note further that (B.7) is of precisely the same form as the closure relation (2.27)
which we had in four dimensions. This is not by accident but we have just applied a
general method of how to gauge supersymmetric theories which goes under the name of
the embedding tensor [@f@, @] In this language the tensors fynp, Eun and &pf
are components of the embedding tensor which is a linear map from the vector space of
vector gauge fields to the Lie algebra of invariances of the ungauged theory. Independent
of the number of supersymmetries or of the spacetime dimension the embedding tensor
always has to satisfy the quadratic constraint (B.7). In addition it always satisfies a linear
constraint which involves extra objects and whose form depends on the number of spacetime
dimensions. For example in D = 4 the linear constraint involves the antisymmetric tensor
Qumn and has the form X(MNQQp)Q = 0 [P7] while in D = 5 it involves the tensor dyap
and takes the form (B.1() below. Our presentation of the five dimensional theory is to a
large extend based on [B3] where the corresponding maximal supergravity was presented.

To give the Lagrangian and the gauge transformations of the theory in the next section
it is useful to introduce the tensors dyag = damng) and ZMN — ZIMN] a5 follows

doprn = daron = dyno = NMN all other components zero, (3.8)
and
1 1
ZMN _ — ¢MN ZOM _ _ZMO P M. 3.9
L, > 3.9)

The embedding tensor then satisfies

Xoun” = dunaZ”C. (3.10)
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3.2 The general Lagrangian

We have already introduced the vector fields Ai‘f and AB. In addition the bosonic field
content consists of scalars that form the coset SO(1,1) x SO(5,n)/SO(5) x SO(n) and
two-form gauge fields B, m = (Bu m> Buvo). In the ungauged theory these two-form
fields do not appear in the Lagrangian but can be introduced on-shell as the duals of the
vector gauge fields. In the gauged theory we consider both vector and two-form fields as
off-shell degrees of freedom, however, the latter do not have a kinetic term but couple to
the vector fields via a topological term such that they turn dual to the vectors due to their
own equations of motion [RJ]. This is analogous to the four dimensional case where the
two-forms turned out to be dual to scalars via the equations of motion.

The SO(1,1) part of the scalar manifold is simply described by one real field ¥ that is
a singlet under SO(5,n) and carries SO(1,1) charge —1/2. In addition we have the coset
SO(5,n)/SO(5) xSO(n) which is parameterized by a coset representative V = (Vy, ™, V),
where m = 1...5 and a = 1...n are SO(5) and SO(n) vector indices. Our conventions
for V here are the same as for the SO(6,n)/SO(6) x SO(n) coset representative we had
in four dimensions, see equations (2.3), (2-4), (B-H). In addition to the symmetric matrix

MMN

My = VYT and its inverse we need the completely antisymmetric

MyNPQR = €mnopg VM VN" VPV VRY. (3.11)

The two-form gauge fields transform dual to the vector gauge field under G, i.e. By, m
is a vector with SO(1,1) charge —1/2 and By, ¢ is a singlet carrying charge 1. They enter
into the covariant field strength of the vector fields as follows

Mot = 20, AN + gXp™M AN AT + 92N By, s (3.12)

We now have all objects to give the bosonic Lagrangian of the general gauged N =4

supergravity in five dimensions
Lios = Lyin + ﬁtop + ﬁpot . (313)

It consists of a kinetic part

1 1 1
—1 _ 2 M N uv —4 4,0 0 pv
e Ekin_iR_ZE MMNH,WH ® _ZE HMV'HM
3
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a topological part [RJ]

e

8v2

ﬁtop = -

1
GWMU{QZMNBWM |:DpB)\0N + 4dNPQA§ (3»4% + ggXRsPA;zAfﬁ]

8
— 3 damyp A0, AN 9\ AT — 2 g dpnp Xor™ AY AZ AR 0,47

2
—= 9* dpnp Xor™ Xsr” AN AZ AR A5 Af} ; (3.15)
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and a scalar potential

eilﬁpot = —g2V
2
g — 1 1 1
=L ErnpEonsS 2 <EMMQMNRMPS_ZMMQnNRnPS_i_EnMQnNRnPS)

1 _
+ 1EungpSt (MM MNG —MPyNC) 4 gy mT2 MY
1
+ g\/ifMNPgQREMMNPQR} : (3.16)

For &7 = 0 the latter agrees with the potential given in [BI].
The topological term seems complicated, but its variation with respect to the vector
and tensor gauge fields takes a rather simple and covariant form, namely

1
5£top = LEHW)}\U <— g ZMN 'H(g) AB)o N + dpnp Hm 'H% 5Az:> + tot. deriv.,

4 \/5 3 uvp M
(3.17)
where we have used the covariant variation
AByy = ZMN <6BW N— QdeQA@MV%) , (3.18)

and the covariant field strength of the two-form gauge fields

1
7MY = MV {3 Dy Byyw + 6dapo AT (ay AS + 2

Q AR 4S
nrp [ o] 3QXR$ Al, AP}>:| . (319)

Note that the two-forms appear in the Lagrangian always projected with ZMV | ie. they
completely decouple from the theory for the ungauged case g — 0, but also for the gauged
theory there are never all two-forms entering the Lagrangian. For gaugings with only fa/np

ZMN

non-zero we have = 0 and thus no two-forms are needed. In the last equation we

also defined the field strength of the two-forms only under ZMV projection because only
then it transforms covariantly under the following gauge transformations [Rd]

M M MN —
0A) = DyN" —gZ7" BN
ABuym = (2D E i — 2dMNpHﬁ£AP) . (3.20)

Here AM = AM(z) and Z,, p = E, m(x) parameterize the (tensor) gauge transformations.
Also the field strength H% transforms covariantly under these transformations, i.e.

SH = —gA Xpp™MHT, . (3.21)

The topological term Ly, is invariant under (B.2() up to a total derivative. The algebra
of gauge transformations closes analogous to the one we found in four dimensions (2.29).
Varying the two-forms in the Lagrangian yields the equation of motion

1 o
ZMN <—€MVP>\U H,S\:;) PA7 MNPHEV> =0, (322)

6v/2
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where we have used

(0
My = < 0 EQMMN> : (3.23)

Due to equation (B.22) the two-forms become dual to the vector gauge fields as was an-
nounced earlier.

3.3 Killing spinor equations

We now turn to the fermions of the five dimensional theory in order to give the Killing
spinor equations. The fermions come in representations of the maximal compact subgroup
H = USp(4) x SO(n) of G, where USp(4) is the covering group of SO(5). In the gravity
multiplet there are four gravitini ,; and four spin 1/2 fermions y;, both vectors under
USp(4) and singlets under SO(n), i = 1...4. In the n vector multiplets there are 4n
spin 1/2 fermions A\? which form a vector under both USp(4) and SO(n), a =1...n. All
fermions are pseudo-Majorana, i.e. they satisfy a pseudo-reality constraint of the form
& = QijC(gj)T, where €2;; is the USp(4) invariant symplectic form and C' is the charge
conjugation matrix.

The coset representative V™ transforms as a 5 under USp(4) and can alternatively

be expressed as Va7 = V] subject to
V=0, WVn')* = Qi V™ (3.24)

Under supersymmetry transformations parameterized by €; = €;(z) we have
i ; 1 _
0 = Dye; — 6 <QijEVM]kH,],wp — Z\/iéfz 2'HBP> (T, — 45ZFP) €k

Z‘ .
+—969ijA{’fr“ek,

\/_
oxi = —% 3i(X7'D,X)MMe; — é V3 <E Qi VMij% + %\/5272 oF HBV> ey,
+ \/ngijAgjek,
SAS = i Q% (V"D Vi M )Trey, — % SV HIL T €+ V295 A3 . (3.25)

Here we have neglected higher order fermion terms. These fermion variations could formally
be read off from [BI]. But the fermion shift matrices Ay;j, Ag;; and Agij which are defined
below now include contributions from the vector &;;.

Using Vi@ and Vi we can define from fasnp, €y and &y scalar dependent tensors
that transform under H. The vector £y gives

T =5y M T =n"yyr e, (3.26)
from the 2-form &3,y one gets

CZ_] _ \/5229“ VMZkVN]l gMN’ Caij _ EQVMaVNZ'j g]\d]\/7 (327)
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and the 3-form fy;yp yields

=3 STVEVINVE L PN Lt = V2R Qu Vi YN Ypdt FMNE O (3.28)

where N9 = Al ¢id = ¢(d) ¢aii — calid], pid = plid) | paii = palis) 14 The fermion shift

matrices can now be defined as

ij _ 1 ij ij
AY :%(_4]4_2,0]) ’

1 (3
A3 =7 (CZ]+,OZ]+§T”> ;

1 g 1 g
gl = 2 (—cw - TV Q) . (3.29)

These matrices do not only appear in the fermion variations but also in the fermion mass
terms that have to appear in the Lagrangian of the gauged theory

V6ig
4

Qs AT DRI, 5+ V29 Qg A GRTH s + V2.9 Qi AL GFTHAT
(3.30)

—1
€ ﬁf.mass =

Note that we have only given those terms that involve the gravitini. Supersymmetry
imposes the following condition on the fermion shift matrices

Qu (A 4] — A A} — AgFAY") =~V (3.31)

where the scalar potential appears on the right hand side. Again this condition is satisfied
as a consequence of the quadratic constraint (B.4).

3.4 Dimensional reduction from D=5to D =4

Starting from a five dimensional N = 4 supergravity one can perform a circle reduction to
get a four dimensional N = 4 supergravity. Thus any five dimensional gauging described by
funpe, Evnv and &y must give rise to a particular four dimensional gauging characterized
by farmnp and &qapr. In other words the set of five dimensional gaugings is embedded into
the set of four dimensional gaugings and we now want to make this embedding explicit.
This yields additional examples of four dimensional gaugings, but it is also interesting in
the context of string dualities in presence of fluxes since the two tensors fy;np and &y
in D =5 turn out to be parts of the single tensor f,asnp under the larger duality group in
D = 4. Thus, as usual, one gets a more unified description of gaugings with different higher
dimensional origin when compactifying the supergravity theory further. With all the group
structure at hand it is not necessary to explicitly perform the dimensional reduction but
we can read off the connection from the formulas for the covariant derivatives (R.12) and

(B.3) (that is from the embedding tensor).

MOur notation translates into that of @] as follows: a, = Ag, AN = ﬁfMNy fJI»DfN = *%fMNP,
. r

= 9 .. a _ __ 9 o =9 5. A
Uz]* 6gAC’Lj7‘/Z - \/EgACZ]7SZ]73gSpZ]7T2]*\/ﬁgspzj'
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A five dimensional theory with n vector multiplets yields a four dimensional theory
with n+1 vector multiplets. One way to understand that is by counting scalar fields. There
are bn+1 scalars already present in five dimensions and in addition one gets one scalar from
the metric and 6+n scalars form the vector fields which gives 6n+8 in total and agrees with
the number of scalars in the coset SL(2) x SO(6,n 4 1)/SO(2) x SO(6) x SO(n+1). When
breaking the SO(6,n+ 1) into SO(1,1)4 x SO(5,n) the vector representation splits into an
SO(5,n) vector v™ and two scalars v® and v© with charges 0, 1/2 and —1/2, respectively,
under SO(1,1)4. When breaking the SL(2) into SO(1,1) g the vector splits into two scalars
vT and v~ with charges 1/2 and —1/2 under SO(1,1)g. The four dimensional vector fields
therefore split into Aﬂ“‘, Aﬂ/[_, Af‘f*‘, Af‘f‘, A?*‘ and A?L_. We can now identifying the
five dimensional vector fields as

Al = AN AS = AT (3.32)

and these fields carry charges 1/2 and —1 under the diagonal of SO(1,1) 4 and SO(1, 1)z and
the five dimensional SO(1,1) therefore has to be this diagonal. Thus the five dimensional
global symmetry generators are given in terms of the four dimensional ones as follows

{SLe)

b — SO(6,n+1) SO(6,n+1)
0~ "+

+ t@EB R tuN = t[MN} . (3.33)
The vector fields Aﬁ/f =, AJ" are the four dimensional duals of Aﬁ/f *and A7, they come
from the two-form gauge fields in five dimensions. The vector fields AP~ and AJT are
uncharged under the five dimensional SO(1,1), they are the Kaluza-Klein vector coming
from the metric and its dual field.

Now, if a four dimensional vector field that was already a vector field in five dimensions
(B-32) gauges a four dimensional symmetry that was already a symmetry in five dimensions
(B.33) the corresponding gauge coupling in the covariant derivative in D = 4 has to be the
same as in D = 5. For the four dimensional covariant derivative (2.12)) one finds

Dy =V, —gAM (04a™ tnp + 2f 1 Ptes + Erat i)
— g A (f—a"Ptnp + & ctes — E—oty—) + DA, (3.34)

where ©,a7np is defined in (R.7)'° and Df}dd denotes exclusively four dimensional contri-
butions to the covariant derivative. By comparing with the known covariant derivative in
five dimensions (B.3) one gets

Sem =8m,  [imec = %ﬁM, f-emn =8&un, fimnp = funp. (3.35)

For a simple circle reduction it is natural to demand furthermore fipnvg =0, frymne =0,
feunp =0, fopae =0, - =0, é&4 = 0 and €15 = 0. Some of the last quantities,
however, may be non-zero for more complicated dimensional reductions and may then
for example correspond to Scherk-Schwarz generators [R9]. But for the ordinary circle

5Note that what we called n in section E is now n + 1 and the index M now is an SO(5,n) vector index
rather than a SO(6,n + 1) index.
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reduction we have just given the embedding of the five dimensional gaugings into the four
dimensional ones. In addition to the above equations we have to make sure that f_ - 5p
is totally antisymmetric in the last three indices (M = {M,®,©}). One can then show
that for these tensors f - yp and £y the four dimensional quadratic constraint (R.2()
becomes precisely the five dimensional one (B.4) for fynp, Epnv and &y Also the four
and the five dimensional scalar potentials (R.17)), (B.1) become the same if all scalars that
are not yet present in D = 5 are set to the origin'®.

Due to the antisymmetry of f,_ ;5p one finds the following additional terms in the

D = 4 covariant derivative:

Dzdd =—g A“Mf (2£MN tne +E&m t,,)
+ 9 AT EN (tne —tne) + 9 AT EN (tnve +tne) - (3.36)

These are couplings of vector fields to symmetry generators that both only occur in four
dimensions. If one explicitly performs the dimensional reduction by hand these gauge

couplings originate from the dualization of the various fields.

4. Conclusions

The general gaugings of N = 4 supergravity in D = 5 and D = 4 were presented. The
D = 4 gaugings are parameterized by two SL(2) x SO(6,n) tensors foynp and Eanr,
subject to a set of consistency constraints. New classes of gaugings were found and it was
shown how the known gaugings are incorporated in this framework. Remarkably, all known
examples can be described by turning on only foasnp or £qar, but we have shown that for a
general gauging both tensors can be non-vanishing. Similarly, in five dimensions the general
gaugings are parameterized by three SO(1,1) x SO(5,n) tensors fyrnp, Emnv and €. The
gaugings with £y = 0 were already described in [BI], but it is necessary to incorporate
&yr to also include non-semi-simple gaugings that result from Scherk-Schwarz dimensional
reduction [R9. For a generic gauging all three tensors may be non-zero. It would be very
interesting to understand how all these gaugings can be obtained from compactifications
of string- or M-theory. For example for the D = 4 gaugings with non-vanishing de Roo-
Wagemans phases the higher dimensional origin is not yet known. The compactifications
that yield these gaugings might be of unconventional type [, f4]. The unifying scheme
presented in this paper should be a useful tool when tackling these questions in a covariant
form. On the other hand, we have so far only presented the gauged theories and have shown
their consistency. It would be interesting to further study these theories by classifying their
ground states, computing the mass spectrum, analyzing stability, etc.
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A. Gauged half-maximal supergravities in D =3

The general gauged half-maximal supergravity in D = 3 was given in [Bg, 5. Here we
shortly describe the underlying group theory and the tensors that parameterize the gauging.
We then give the fermion shift matrices and the scalar potential in the same form as we
did in four and five dimensions. Finally we describe the embedding of the four dimensional
gaugings into the three dimensional ones. This relation is necessary in order to calculate
the four and five dimensional scalar potentials from the known three dimensional one.

A.1 General gauging, scalar potential, fermion shift matrices

The global symmetry group of the ungauged theory is G = SO(8,n), where n again counts

AM[MN}

the number of vector multiplets. The vector fields AMM N = transform in the adjoint

representation of G. Here M, N = 1,...,8 + n are SO(8,n) vector indices. The general
gauging is parameterized by the two real tensors Ayynpg = Apynpg) and Aun = Aarnys
with 7N X\jyrn = 0, and one real scalar A. Together they constitute the embedding tensor

OMNPQ = AMNPQ + A\[p[M INIQ) T ATP[M TINIQ » (A.1)
which enters into the covariant derivative
D, =0, — A MY euntpg . (A.2)

Due to the above definition the embedding tensor automatically satisfies the linear con-

straint
OMNPQ =OPQuN - (A.3)
In addition it has to satisfy the quadratic constraint
Omnt" OpgvY — Opor' OunvY = Ounpp Ogur? (A4)

which may be written as a constraint on Aynpg, Amn and A.

The scalars of the theory form the coset SO(8,1)/SO(8) x SO(n) and in the following
we use the same conventions and notations as for the SO(6,7)/SO(6) x SO(n) coset in four
dimension, in particular we again have

Myn = VM"Y + V" V"™, nuN = VYN = V" VN, (A.5)
where now a = 1,...,nand m =1,...,8. In addition we need the scalar dependent object
MMNPQRSTU = €mnopgrst V" VN"Vp° VP VRIS Vr* Vit . (A.6)

,27,



The scalar potential then takes the form

1 1
V= _ o [)\MNPQ)\RSTU( _ §MMRMNSMPTMQU 4 3MME\ NS PT, QU

3 1
_ 4MMR NS, PT QU | 27 MR NS, PT, QU _MMNPQRSTU)
nonon +2 nonon "‘3

+ AMNAPQ <—§MMPMNQ + §nMPnNQ 4 ZMMNMPQ>
+192)0% — 24 X Ay MMN] , (A7)

Although written differently, this is the same potential as given in [B§].

The maximal compact subgroup of G is H = SO(8) x SO(n). All the fermions and the
fermion shift matrices A; and Ay transform under H. Let A, A=1,...,8 be (conjugate)
SO(8) spinor indices. The Gamma-matrices of SO(8) satisfy

(mpn) — plm ]
FAAFBA—5mn5AB, ZE:I’AAI’BA. (A.8)
Then the fermion shift matrices A; and As are defined through the so called T-tensor as
follows [BY]
1
TAB CD _ Erigr%DvaVNnVPOVQp@MN PQ ’
1
TAB ma _ ZFfPBVMOVNpVPmVQaeMN PQ ,
A’f‘B _ _§TACBC 4 iéABTCDCD7
3 21
2 1
APy = 2T g — ST g — 3T T P (A.9)
The quadratic constraint (A.4)) guarantees that A; and A satisfy
1
ATCATC = 430, AT = — g0V (A.10)

with the scalar potential V' appearing on the right hand side.

A2 From D=4to D=3

Performing a circle reduction of four dimensional N = 4 supergravity with n vector mul-
tiplets yields a three dimensional N = 8 supergravity with n + 2 vector multiplets. The
embedding of the global symmetry groups is given by

SO(8,n +2) O SO(2,2) x SO(6,n) O SL(2) x SO(6,n), (A.11)

where the SL(2) is just one of the factors in SO(2,2) = SL(2) x SL(2). Accordingly we
split the fundamental representation of SO(8,n +2) as vM = (v™, 1) where a = 1,2 and
x = 1,2. Note that the SO(8,n 4 2) vector index is denoted by M, while M is an SO(6, n)

vector index. The SO(2,2) metric is given by

Moo ys = €xy€as which yields Moy’ ¥ = 077 (A-12)
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The SL(2) generators t(og), t(zy) and the SO(2,2) generators t;qys = tyg.a are related as
follows

1
t$04y5 = _5 (Eaﬁt:vy + Ezytaﬁ) 5 (A13)

where we use the conventions (tn)p< = 55\477/\[]73 for the SO(2,2) generators (M = za).
The embedding of the D = 4 vector fields into the D = 3 ones is then given by

Mo __ M la
AMa — pMie (A.14)

where Aﬂ/f e denotes the corresponding components of the D = 3 vector fields Aﬂ;f N =
ALMN]. Analogous to the reduction from D = 5 to D = 4 described in section B.4, now the
covariant derivatives in D = 4 and D = 3 have to agree for those terms already present in

D=4, ie.

Dﬂ D) (9“ — QA!J‘% 1a@M 1aNP7fNP + Afy la@M 10[16?” €xy tﬁ,y

= 0 — A MO NPty p — AMYO Mg, (A.15)

This yields

1
Ma MNP = — 3 faMmNP AM1az8yy € = B €a(v§B)M AMam = EaM (A.16)

while we demand the other components of Ay 5 PO and Ay 5 to vanish and also A = 0.
However, the antisymmetry of Ay 5 PO and the symmetry of ;5 has to be imposed, for
example

~ ~ 1
AM za zByy — AM {za}{zB8} {yv}] > AM za zByy — 5 5; Eryea('ygﬁ)M : (A17)

We have thus defined the embedding of the four dimensional gaugings into the three dimen-
sional ones. The quadratic constraint (A.4) in D = 3 is satisfied iff the D = 4 quadratic
constraint (2.20) is satisfied. The D = 3 scalar potential (A.7) reduces to the D = 4
potential (R.11]) when all D = 3 extra scalars are set to the origin.
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