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1. Introduction

The first examples of N = 4 supergravities in four spacetime dimensions were constructed

in the second half of the seventies [1 – 4] and within the following decade the coupling of

vector multiplets to these theories and some of their gaugings were worked out [5 – 9]. In

N = 4 the gaugings are the only known deformations of the theory that are compatible

with supersymmetry. They are induced by minimal couplings of vector fields to isometry

generators, but supersymmetry requires various additional couplings and in particular the

emergence of a scalar potential, thus giving the possibility of ground states with non-

vanishing cosmological constant. So far, however, no stable de Sitter ground state has

been found in these theories [10].

From a string theory perspective the N = 4 theories result from orientifold compact-

ifications of IIB supergravity [11, 12]. In this picture part of the deformation parameters

of the gauging correspond to fluxes or additional branes on the background [13 – 17]. But
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so far not all known gaugings could be identified in this way. Lower N theories can be

obtained by truncation of the N = 4 supergravities, for example certain relevant N = 1

Kähler potentials can be computed from the N = 4 scalar potential [18 – 20].

By incorporating all possible gauged N = 4 supergravities in a universal formulation in

this paper we hope to illuminate the interrelation of the different theories but also to pave

the way for a future analysis of particular gaugings. The gaugings are parameterized by

an embedding tensor which can be treated as a group theoretical object and is subject to a

set of consistency constraints. This method was successfully used to work out the general

gaugings of maximal supergravities for various spacetime dimensions [21 – 24]. For an even

number of spacetime dimensions there are subtleties that seem to hamper the universal

description. For example in D = 4 magnetic vector fields are usually introduced on-shell

via the equations of motion, while for a general gauging they may possibly occur as gauge

fields in the covariant derivative already at the level of the Lagrangian. Closely related to

this problem is the fact that in D = 4 the global symmetry group of a supergravity theory

is generically only realized on-shell since it involves duality rotations between the electric

and magnetic vector fields [25, 26]. These issues were resolved in [27], where for a general

four dimensional theory it was explained how to consistently couple electric and magnetic

vector gauge fields together with two-form tensor gauge fields for a general gauging. Here

we apply this method to the case of gauged N = 4 supergravities.

In D = 4 the global symmetry group of the ungauged theory is G = SL(2)× SO(6, n),

where n denotes the number of vector multiplets. This group also organizes the gaugings

since the deformation parameters fαMNP and ξαM are tensors under G (they are explicitly

defined below). These tensors are the irreducible components of the embedding tensor.

In terms of them the bosonic Lagrangian and the Killing spinor equations are presented,

the consistency constraints which they have to satisfy are explained and solutions to these

constraints are discussed. In particular the SU(1, 1) phases that were introduced by de Roo

and Wagemans to find ground states with non-vanishing cosmological constant [7, 8, 28]

are identified as parameters incorporated in fαMNP . In the same manner the parameters

that correspond to three-form fluxes in compactifications from IIB supergravity [13 – 16]

are identified. Also the gaugings that originate from Scherk-Schwarz reduction from D = 5

are included in our formulation [29]. In addition, there are various other gaugings that

have not yet been discussed in the literature, in particular all gaugings with both fαMNP

and ξαM non-zero are novel.

Analogous to the four dimensional case the general five dimensional gauged N = 4

supergravity1 is worked out by applying the ideas of [23], where the corresponding gauged

maximal supergravity was presented. In D = 5 the irreducible components of the embed-

ding tensor are tensors fMNP , ξMN and ξM , which are tensors under the global symmetry

group SO(1, 1)×SO(5, n). The first account of the ungauged N = 4 supergravity in D = 5

was given in [30], where also the first gauging of the theory was already considered. Those

gaugings where the gauge group is a product of a semi-simple and an Abelian factor were

1We denote by N = 4 the half-maximal supergravity, although in five spacetime dimensions this theory

is sometimes referred to as N = 2.
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already presented in [31], examples of this type were already known for a while [32]. Also

some non-semi-simple gaugings were already constructed [29]. Our presentation incorpo-

rates all these known gaugings and also includes new ones.

In former descriptions of D = 5 gauged supergravities the vector fields that are not

needed as gauge fields were dualized into two-form fields to make the theory consistent

[31 – 37]. This makes the field content of the theory dependent on the particular gauging

and makes it difficult to formulate the general gauged theory in a covariant way. It was

shown in [23] that one can deal with this issue by introducing both the vector fields and all

their dual two-form fields as off-shell degrees of freedom and couple them via a topological

term such that their duality equation results from the equations of motion. The same

concept is used here to describe the general five dimensional gauged theory.

The gauged N = 4 supergravities in five dimensions are naturally embedded into the

four dimensional ones by dimensional reduction and we make this relation explicit within

this paper. Noteworthy, the five dimensional gaugings are parameterized in terms of three

tensors fMNP , ξMN and ξM while the four dimensional ones are parameterized in terms

of two tensors fαMNP and ξαM only. Thus with decreasing spacetime dimension one finds

not only a larger duality group but also a more uniform description of the deformations.

This is the typical picture of dualities in string theory where dimensional reduction relates

theories with different higher-dimensional origin.

The paper is organized as follows. In section 2 we present the general four dimensional

theory. We give its bosonic Lagrangian and its Killing spinor equations, discuss the con-

sistency constraints on the deformation parameters, and describe examples of gaugings,

including those known from the literature. In section 3 the five dimensional theories are

discussed analogously. Eventually, having both general gauged theories at hand, their em-

bedding induced by a circle reduction is given. For completeness, we sketch the analogous

embedding of the D = 4 into the D = 3 gaugings in the appendix.

2. Gauged N = 4 supergravities in D = 4

The gaugings of N = 4 supergravity in four spacetime dimensions are parameterized by

two real constant tensors fαMNP and ξαM . These are tensors under the global on-shell

symmetry group SL(2) × SO(6, n), and α = 1, 2 and M = 1, . . . , 6 + n are the respective

vector indices. In the following section the Lagrangian of the theory is given in terms of

these tensors. However, fαMNP and ξαM can not be chosen arbitrarily, the consistency

conditions that they have to obey are discussed in section 2.2.

2.1 Lagrangian and field equations

The N = 4 supergravity multiplet contains as bosonic degrees of freedom the metric, six

massless vectors and two real massless scalars. The corresponding supergravity theory has

a global SL(2)× SO(6) symmetry [3] which is realized only on-shell. The scalar fields con-

– 3 –



J
H
E
P
0
5
(
2
0
0
6
)
0
3
4

stitute an SL(2)/SO(2) coset2. Coupling this theory to n vector multiplets, each containing

one vector and six real scalars, yields an N = 4 supergravity with global on-shell symmetry

group G = SL(2) × SO(6, n) [6]. This is the theory whose deformations we want to study

here for arbitrary n ∈ N.

For the vector fields of the theory one can choose a symplectic frame such that the

subgroup SO(1, 1) × SO(6, n) of G is realized off-shell. The electric vector fields Aµ
M+

(M = 1, . . . , 6+n) then form a vector under SO(6, n) and carry charge +1 under SO(1, 1).

Their dual magnetic vector fields Aµ
M− form an SO(6, n) vector as well but carry SO(1, 1)

charge −1. Together they constitute an SL(2) vector Aµ
Mα = (Aµ

M+, Aµ
M−)3.

The scalar fields form the coset space G/H, where H = SO(2)× SO(6)× SO(n) is the

maximal compact subgroup of G. The SL(2)/SO(2) factor of this coset can equivalently

be described by a complex number τ with Im(τ) > 0 or by a symmetric positive definite

matrix Mαβ ∈ SL(2). The relation between these two descriptions is given by

Mαβ =
1

Im(τ)

(

|τ |2 Re(τ)

Re(τ) 1

)

, Mαβ =
1

Im(τ)

(

1 −Re(τ)

−Re(τ) |τ |2

)

, (2.1)

where Mαβ is the inverse of Mαβ . The SL(2) symmetry action on Mαβ

M → gMgT , g =

(

a b

c d

)

∈ SL(2) , (2.2)

acts on τ as a Möbius transformation τ → (aτ + b)/(cτ + d).

The SO(6, n)/SO(6) × SO(n) factor of the scalar coset is described by coset represen-

tatives VM
a and VM

m where m = 1, . . . , 6 and a = 1, . . . , n denote SO(6) and SO(n) vector

indices, respectively. The matrix V = (VM
m, VM

a) is an element of SO(6, n), i.e.

ηMN = −VM
mVN

m + VM
aVN

a , (2.3)

where ηMN = diag(−1,−1,−1,−1,−1,−1,+1, . . . ,+1) is the SO(6, n) metric. Global

SO(6, n) transformations act on V from the left while local SO(6)×SO(n) transformations

act from the right

V → gVh(x) , g ∈ SO(6, n), h(x) ∈ SO(6) × SO(n) . (2.4)

Analogous to Mαβ this coset space may be parameterized by a symmetric positive definite

scalar metric M = VVT , explicitly given by

MMN = VM
aVN

a + VM
mVN

m . (2.5)

2In the literature the symmetry group is usually denoted by SU(1, 1), however, we prefer to treat it

as SL(2) which is of course the same group but with different conventions concerning its fundamental

representation.
3Here and in the following we use indices α, β, . . . = +,− for SL(2) vectors. The embedding of the off-shell

symmetry group SO(1, 1) into SL(2) defines a basis for these vectors and thus components vα = (v+, v−)

and vα = (v+, v−). For the epsilon tensor εαβ we use ε+− = ε+− = 1 which yields εαγεβγ = δβ
α.
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Its inverse we denote by MMN . Note that each of the matrices MMN , VM
m and VM

a alone

already parameterizes the SO(6, n) part of the scalar coset.

In order to later give the scalar potential we also need to define the scalar dependent

completely antisymmetric tensor

MMNPQRS = εmnopqr VM
mVN

nVP
oVQ

pVR
qVS

r . (2.6)

The ungauged theory contains the metric, electric vector fields and scalars as free

fields in the Lagrangian, while the dual magnetic vectors and two-form gauge fields are

only introduced on-shell (this is the description we choose). The latter come in the adjoint

representation of G and since G has two factors there are also two kinds of two-form gauge

fields, namely BMN
µν = B

[MN ]
µν and Bαβ

µν = B
(αβ)
µν = (B++

µν , B+−
µν , B−−

µν ). For the general

description of the gauged theory all these fields appear as free fields in the Lagrangian

[27]. For the magnetic vectors this is necessary because they can appear as gauge fields in

the covariant derivative while the two-forms in turn are required in order to consistently

couple the vector fields. Some of the vector fields that are not needed in the gauging

become Stueckelberg fields for the two-forms.

Neither the magnetic vector fields Aµ
M− nor the two-form gauge fields have a kinetic

term and via their first order equations of motion they eventually turn out to be dual to

the electric vector fields Aµ
M+ and to the scalars, respectively. Thus the number of degrees

of freedom remains unchanged as compared to the ungauged theory.

The gauged supergravities are parameterized by two G-tensors ξαM = (ξ+M , ξ−M ) and

fαMNP = (f+MNP , f−MNP ) with fαMNP = fα[MNP ]. One should think of these tensors as

generalized structure constants of the gauge group. They have to satisfy certain consistency

constraints to be introduced later. The following combinations occur regularly

ΘαMNP = fαMNP − ξα[N ηP ]M ,

f̂αMNP = fαMNP − ξα[M ηP ]N − 3

2
ξαNηMP . (2.7)

In addition we use a gauge coupling constant g which is actually dispensable by rescaling

fαMNP → g−1 fαMNP and ξαM → g−1 ξαM . Nevertheless it is convenient to use g to keep

track of the order in the gauge coupling.

We can now present the bosonic Lagrangian of the general gauged theory4

Lbos = Lkin + Ltop + Lpot . (2.8)

It consists of a kinetic term

e−1Lkin =
1

2
R +

1

16
(DµMMN )(DµMMN ) − 1

4 Im(τ)2
(Dµτ)(Dµτ∗) (2.9)

− 1

4
Im(τ)MMNHµν

M+HµνN+ +
1

8
Re(τ) ηMN εµνρλHµν

M+Hρλ
N+ ,

4Our space-time metric has signature (−, +, +, +) and the Levi-Civita is a proper space-time tensor, i.e.

ε0123 = e, ε0123 = −e−1.
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a topological term for the vector and tensor gauge fields [27]

e−1Ltop = − g

2
εµνρλ

{

ξ+MηNP AM−
µ AN+

ν ∂ρA
P+
λ −

(

f̂−MNP + 2 ξ−NηMP

)

AM−
µ AN+

ν ∂ρA
P−
λ (2.10)

− g

4
f̂αMNRf̂βPQ

RAMα
µ AN+

ν APβ
ρ AQ−

λ +
g

16
Θ+MNP Θ−

M
QRBNP

µν BQR
ρλ

−1

4

(
Θ−MNP BNP

µν + ξ−MB+−
µν + ξ+MB++

µν

) (
2∂ρA

M−
λ − gf̂αQR

MAQα
ρ AR−

λ

)
}

,

and a scalar potential

e−1Lpot = −g2V

= −g2

16

{

fαMNP fβQRSMαβ
[1

3
MMQMNRMPS +

(
2

3
ηMQ − MMQ

)

ηNRηPS
]

− 4

9
fαMNP fβQRSεαβMMNPQRS + 3 ξM

α ξN
β MαβMMN

}

. (2.11)

The covariant derivative Dµ appearing in Lkin acts on objects in an arbitrary representation

of G = SL(2) × SO(6, n) as

Dµ = ∇µ − g Aµ
MαΘαM

NP tNP + g Aµ
M(αεβ)γξγM tαβ , (2.12)

where ∇µ contains the spin-connection and tNP and tαβ are the generators of the global

symmetry group5. Explicitly one finds for the scalar fields

DµMαβ = ∂µMαβ + gAMγ
µ ξ(αMMβ)γ + gAMδ

µ ξεMεδ(αεεγMβ)γ ,

DµMMN = ∂µMMN + 2gAµ
PαΘαP (M

QMN)Q . (2.13)

Note that Im(τ)−2(Dµτ)(Dµτ∗) = −1
2(DµMαβ)(DµMαβ), i.e. the kinetic term for τ can

equivalently be expressed in terms of Mαβ .

The full covariant field strengths of the electric and magnetic vector fields are given

by6

HM+
µν = 2∂[µAν]

M+−g f̂αNP
MA[µ

NαAν]
P++

g

2
Θ−

M
NP BNP

µν +
g

2
ξ+

MB++
µν +

g

2
ξ−

MB+−
µν ,

HM−
µν = 2∂[µAν]

M−−g f̂αNP
MA[µ

NαAν]
P−− g

2
Θ+

M
NP BNP

µν +
g

2
ξ−

MB−−
µν +

g

2
ξ+

MB+−
µν .

(2.14)

5In the vector representation the symmetry generators have the form (tMN)P
Q = δQ

[Mη
N]P and (tαβ)γ

δ =

δδ
(αεβ)γ , respectively.

6Note that the indices + and − on the vector fields and on their field strengths distinguish the electric

ones from the magnetic ones and thus do not indicate complex self-dual combinations of the field strengths

as is common in the literature. We hope note to confuse the reader with that notation.
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Only HM+
µν enters the Lagrangian, but HM−

µν appears in the equations of motion. To express

the latter it is also useful to define the following combination of the electric field strengths

Gµν
M+ ≡ Hµν

M+ ,

Gµν
M− ≡ e−1 ηMN εµνρλ

∂Lkin

∂HN+
ρλ

= −1

2
εµνρλ Im(τ)MMNηNPHP+ ρλ − Re(τ)HM+

µν . (2.15)

The importance of Gµν
M− becomes clear in the ungauged theory obtained from (2.8) in

the limit g → 0. In this limit the topological term and the potential vanish and Hµν
M+

and Hµν
M− reduce to Abelian field strengths. Since the magnetic vectors and the two-

form gauge fields only appear projected with some combination of fαMNP and ξαM they

completely decouple from the Lagrangian at g = 0. The equations of motion for the electric

vector fields then take the form ∂[µGνρ]
M− = 0. In the ungauged theory magnetic vector

fields are introduced by hand via HM−
µν = GM−

µν and GMα = (GM+,GM−) and HMα are

on-shell identical.

Turning back to the gauged theory one finds for general variations of the vector and

two-form gauge fields that the Lagrangian varies as [27]

e−1δLbos =
1

8
g

(
Θ−MNP ∆BNP

µν + ξ−M∆B+−
µν + ξ+M∆B++

µν

)
εµνρλ

(

HM−
ρλ − GM−

ρλ

)

+
1

2
(δAM+

µ )
(

g ξβMM+γDµMβγ +
g

2
Θ+MP

NMNQDµMQP − εµνρληMN DνGN−
ρλ

)

+
1

2
(δAM−

µ )
(

g ξβMM−γDµMβγ +
g

2
Θ−MP

NMNQDµMQP + εµνρληMN DνGN+
ρλ

)

+ total derivatives , (2.16)

where we used the “covariant variations”

∆BMN
µν = δBMN

µν − 2εαβA
α[M
[µ

δA
N ]β
ν]

,

∆Bαβ
µν = δBαβ

µν + 2ηMNA
M(α
[µ δA

β)N
ν] . (2.17)

Equation (2.16) encodes the gauge field equations of motion of the theory. Variation of

the two-form gauge fields yields a projected version of the duality equation HM−
µν = GM−

µν

between electric and magnetic vector fields. From varying the electric vector fields one

obtains a field equation for the electric vectors themselves which contains scalar currents

as source terms. Finally, the variation of the magnetic vectors gives a duality equation

between scalars and two-form gauge fields. To make this transparent one needs the modified

Bianchi identity for HM+
µν which reads

D[µ HM+
νρ] =

g

6

(

Θ−
M

PQH(3)PQ
µνρ + ξ+

MH(3)++
µνρ + ξ−

MH(3)+−
µνρ

)

, (2.18)

where the two-form field strengths are given by

H(3)MN
µνρ = 3 ∂[µBMN

νρ] + 6 εαβ A
α[M
[µ ∂ν A

N ]β
ρ] + O(g) ,

H(3)αβ
µνρ = 3 ∂[µBαβ

νρ] + 6 ηMN A
M(α
[µ ∂ν A

β)N
ρ] + O(g) , (2.19)

– 7 –



J
H
E
P
0
5
(
2
0
0
6
)
0
3
4

up to terms of order g.

Thus we find that the tensors fαMNP and ξαM do not only specify the gauge group

but also organize the couplings of the various fields. They determine which vector gauge

fields appear in the covariant derivatives, how the field strengths have to be modified,

which magnetic vector fields and which two-form gauge fields enter the Lagrangian and

how they become dual to electric vector fields and scalars via their equation of motion.

However, consistency of the entire construction above crucially depends on some particular

quadratic constraints that fαMNP and ξαM have to satisfy and which are presented in the

next subsection.

In principle one should also give the fermionic contributions to the Lagrangian and

check supersymmetry to verify that (2.8) really describes the bosonic part of a supergrav-

ity theory. We have obtained the results by applying the general method of covariantly

coupling electric and magnetic vector gauge fields in a gauged theory [27] to the particular

case of N = 4 supergravity. This fixes the bosonic Lagrangian up to the scalar potential.

The latter is also strongly restricted by gauge invariance, only those terms that appear in

(2.11) are allowed. We obtained the pre-factors between the various terms by matching the

scalar potential with the one known from half-maximal supergravity in three spacetime di-

mensions [38], see appendix A. The general theory then was compared with various special

cases that were already worked out elsewhere [7, 9, 10, 13 – 16, 28, 29, 39], see section 2.4.

2.2 Quadratic constraints and gauge invariance

We have seen that the tensors ξαM and fαMNP = fα[MNP ] parameterize the possible

gaugings of the theory. These are constant tensors (their entries are fixed real numbers)

for which we demand in addition the following set of consistency constraints

ξM
α ξβM = 0 ,

ξP
(αfβ)PMN = 0 ,

3fαR[MNfβPQ]
R + 2ξ(α[Mfβ)NPQ] = 0 ,

εαβ
(
ξP
α fβPMN + ξαM ξβN

)
= 0 ,

εαβ
(
fαMNRfβPQ

R − ξR
α fβR[M [P ηQ]N ] − ξα[MfN ][PQ]β + ξα[P fQ][MN ]β

)
= 0 . (2.20)

These quadratic constraints guarantee the closure of the gauge group, as will be explained

below. The deformation of the theory is consistent if and only if these constraints are

satisfied. They are invariant under the global symmetry group: given one solution one can

create another one by a G action. But all solutions generated in this way describe the

same gauged supergravity. This is obvious for those G transformation that belong to the

SO(1, 1)× SO(6, n) off-shell symmetry since the entire construction of the last section was

formally invariant under these transformations, i.e. these transformations correspond to a

linear field redefinition that does not mix magnetic and electric vector fields. In contrast,

two solutions of the constraints which are related by a general SL(2) transformation yield

two theories which at first sight look rather different but are related by a symplectic

transformation which rotates electric into magnetic vector fields and vice versa.
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It is convenient to define a composite index for the vector fields by Aµ
M = Aµ

Mα, and

a symplectic form ΩMN by

ΩMN = ΩMαNβ ≡ ηMNεαβ , ΩMN = ΩMα Nβ ≡ ηMN εαβ , (2.21)

The symplectic group Sp(12 + 2n) is the group of linear transformations that preserve

ΩMN . An arbitrary symplectic rotation of the theory gives a Lagrangian that is not yet

contained in the description above but which describes the same theory on the level of

the equations of motion. All possible Lagrangians of gauged N = 4 supergravity are thus

parameterized by ξαM , fαMNP and an element of Sp(12 + 2n).

In order to illustrate the meaning of the quadratic constraints (2.20) we first consider

the case of purely electric gaugings for which ξαM = 0 and f−MNP = 0. In this case only

electric vector fields Aµ
M+ enter the Lagrangian. We then find f+MN

P = f+MNQ ηQP to

be the structure constants of the gauge group and the constraint (2.20) simplifies to the

Jacobi identity

f+R[MNf+PQ]
R = 0 . (2.22)

Due to this identity the topological term Ltop vanishes in this case. Note that the SO(6, n)

metric ηMN is used to contract the indices in (2.22), while in the ordinary Jacobi identity

the Cartan Killing form occurs. Also the indices M,N, . . . run over 6 + n values while the

gauge group might be of smaller dimension. These issues will be discussed in section 2.4.

In the general case of an arbitrary solution of (2.20) we can read off the gauge group

generators from the covariant derivative (2.12). For an object in the vector field represen-

tation we want

Dµ ΛM = ∇µ ΛM + g AN
µ XNP

M ΛP , (2.23)

which yields

XMN
P = XMα Nβ

Pγ (2.24)

= −δγ
β fαMN

P +
1

2

(

δP
M δγ

β ξαN − δP
N δγ

α ξβM − δγ
β ηMN ξP

α + εαβ δP
N ξδM εδγ

)

.

Note that these objects satisfy

XM[N
QΩP]Q = 0 , X(MN

QΩP)Q = 0 . (2.25)

It was found in [27] that the last of these equations is crucial for consistency of the gauged

theory. It is this linear constraint that demands the gauge group generators to be param-

eterized by fαMNP and ξαM according to (2.24).

An infinitesimal gauge transformation is parameterized by ΛM(x) = ΛMα(x) and acts

on objects xM and xM in the (dual) vector field representations as

δxM = −g ΛN XNP
M xP , δxM = g ΛN XNM

P xP , (2.26)

– 9 –



J
H
E
P
0
5
(
2
0
0
6
)
0
3
4

where g is the gauge coupling constant. This defines the gauge group G0 ⊂ G ⊂ Sp(12+2n).

Treating the generators XMN
P = (XM)N

P as matrices we find the following commutator

relations to be satisfied

[XM,XN ] = −XMN
P XP , (2.27)

i.e. the gauge group G0 is closed. Some computation reveals that the last equation is

equivalent to the quadratic constraint (2.20). Therefore the quadratic constraint is a gen-

eralization of the Jacobi identity (2.22) guaranteeing the closure of the gauge group. Fur-

thermore according to (2.27) the generators XMN
P take the role of generalized structure

constants. However, they are only antisymmetric in M, N after having contracted with

XP . The fact that X(MN )
P is in general not vanishing explains the need for the two-form

gauge fields in the generalized field strengths (2.14). The ordinary field strength would not

transform covariantly under gauge transformations ΛMα(x).

The two-form gauge fields BMN
µν and Bαβ

µν are equipped with tensor gauge transforma-

tions parameterized by ΞMN
µ = Ξ

[MN ]
µ and Ξαβ

µ = Ξ
(αβ)
µ . Under general vector and tensor

gauge transformations the gauge fields transform as

δAM+
µ = DµΛM+ − g

2
Θ−

M
NP ΞNP

µ − g

2
ξ+

MΞ++
µ − g

2
ξ−

MΞ+−
µ ,

δAM−
µ = DµΛM− +

g

2
Θ+

M
NP ΞNP

µ − g

2
ξ−

MΞ−−
µ − g

2
ξ+

MΞ+−
µ ,

∆BMN
µν = 2D[µΞMN

ν] − 2εαβΛα[M GN ]β
µν ,

∆Bαβ
µν = 2D[µΞαβ

ν] + 2ηMNΛM(α Gβ)N
µν , (2.28)

where we used the covariant variations of the two-form gauge fields (2.17). Under these

gauge transformations the Lagrangian (2.8) is invariant. The only non-vanishing commu-

tator of these gauge transformations is7

[δΛ1 , δΛ2 ] = δΛ̃ + δΞ̃ , (2.29)

where

Λ̃M = gXNP
MΛN

[1 ΛP
2] ,

Ξ̃MN
µ = εαβ

(

Λ
α[M
1 DµΛ

N ]β
2 − Λ

α[M
2 DµΛ

N ]β
1

)

,

Ξ̃αβ
µ = −ηMN

(

Λ
M(α
1 DµΛ

β)N
2 − Λ

M(α
2 DµΛ

β)N
1

)

. (2.30)

In the action on objects that do not transform under tensor gauge transformations (like

field strengths, scalar fields) this algebra coincides with (2.27).

2.3 Killing spinor equations

So far we have only considered bosonic fields and we do not intend to give the entire

fermionic Lagrangian nor the complete supersymmetry action. They can e.g. be found in

7In the Lagrangian the two-form gauge fields only appear under a particular projection with fαMNP

and ξαM and the gauge transformation on them only close under this very projection [23].
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SO(2) charges SU(4) rep. SO(n) rep.

gravitini ψi
µ − 1

2 4 1

spin 1/2 fermions χi + 3
2 4 1

spin 1/2 fermions λai + 1
2 4 n

Table 1: H-representations of the fermions.

the paper of Bergshoeff, Koh and Sezgin [9] for purely electric gaugings when only f+MNP

is non-zero, and we have chosen most of our conventions to agree with their work in this

special case8. In particular all terms of order g0, i.e. terms of the ungauged theory, can be

found there.

Our aim in this section is to give the Killing spinor equations of the general gauged

theory, i.e. the variations of the gravitini and of the spin 1/2 fermions under supersymme-

try. Those are required for example when studying BPS solutions or when analyzing the

supersymmetry breaking or preserving of particular ground states.

All the fermions carry a representation of H = SO(2) × SO(6) × SO(n) which is the

maximal compact subgroup of G. Instead of SO(6) we work with its covering group SU(4) in

the following. The gravity multiplet contains four gravitini ψi
µ and four spin 1/2 fermions

χi and in the n vector multiplet there are 4n spin 1/2 fermions λai, where i = 1, . . . , 4

and a = 1, . . . , n are vector indices of SU(4) and SO(n). The SO(2) = U(1) acts on the

fermions as a multiplication with a complex phase exp(iqλ(x)), where the charges q are

given in table 1.

As usual we use gamma-matrices with

{Γµ,Γν} = 2ηµν , (Γµ)† = ηµνΓν , Γ5 = iΓ0Γ1Γ2Γ3 . (2.31)

All our fermions are chiral. We choose ψi
µ and λai to be right-handed while χi is left-handed,

that is

Γ5ψ
i
µ = +ψi

µ , Γ5χ
i = −χi , Γ5λ

ai = +λai . (2.32)

Vector indices of SU(4) are raised and lowered by complex conjugation, i.e. for an ordinary

SU(4) vector vi = (vi)∗. However, for fermions we need the matrix B = iΓ5Γ2 to define

φi = B(φi)∗. This ensures that φi transforms as a Dirac spinor when φi does. The

complex conjugate of a chiral spinor has opposite chirality, e.g. χi = B(χi)∗ is right-

handed9. For φ̄i = (φi)†Γ0 we define the complex conjugate by φ̄i = (φ̄i)
∗B which yields

8The structure constants fMNP in [9] equal minus f+MNP .
9Right-handed spinors can be described by Weyl-spinors φA, and left-handed ones then turn to conjugate

Weyl-spinors φȦ. Here A and Ȧ are (conjugate) SL(2, C) vector indices. In the chiral representation of the

Gamma-matrices

Γµ =

 

0 σµ

σµ 0

!

, Γ5 =

 

�
0

0 −
�

!

, B = iΓ5Γ2 =

 

0 ε

−ε 0

!

,

where ε is the two-dimensional epsilon-tensor and σµ = (
�
, ~σ), σµ = ηµνσν = (−

�
, ~σ) contains the Pauli

matrices, we find right-handed spinors to have the form φ = (φA, 0)T while left-handed ones look like

φ = (0, φȦ)T . Thus we have χi = (0, χi

Ȧ
)T and its complex conjugate is given by χi = (χA

i , 0)T where the

Weyl-spinors are related by χA
i = εAB(χi

Ḃ
)∗.
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φ̄iχ
i = χ̄iφi = (φ̄iχi)

∗ = (χ̄iφ
i)∗.

An SO(6) vector vm can alternatively be described by an antisymmetric tensor vij =

v[ij] subject to the pseudo-reality constraint

vij = (vij)∗ =
1

2
εijklv

kl . (2.33)

We normalize the map vm 7→ vij such that the scalar product becomes

vmwm =
1

2
εijklv

ijwkl . (2.34)

We can thus rewrite the coset representative VM
m as VM

ij such that the equations (2.3)

and (2.6) become

ηMN = −1

2
εijklVM

ijVN
kl + VM

aVN
a ,

MMNPQRS = − 2 i εijps εklqt εmnru V[M
ijVN

klVP
mnVQ

pqVR
rsVS]

tu . (2.35)

The scalar matrices VM
ij and VM

a can be used to translate from SO(6, n) representations

under which the vector and tensor gauge fields transform into SO(6)×SO(n) representations

carried by the fermions. They are thus crucial when we want to couple fermions. For the

same reason it is necessary to introduce an SL(2) coset representative, namely a complex

SL(2) vector Vα which satisfies

Mαβ = Re(Vα(Vβ)∗) . (2.36)

Under SO(2) Vα carries charge +1 while its complex conjugate carries charge −1.10

When gauging the general theory all partial derivatives are replaced by covariant

derivatives ∂ → D and all Abelian field strengths by covariant ones FM+ → HM+. More-

over one has to add the topological term and the scalar potential to the Lagrangian as we

have described in section 2.1. In the fermionic sector the only additional change that has

to be made in the Lagrangian is the introduction of fermionic mass terms and fermionic

couplings, all of order g1. For example those terms that involve the gravitini read

e−1Lf.mass =
1

3
g Aij

1 ψ̄µi Γµν ψνj −
1

3
i g Aij

2 ψ̄µi Γµ χj + ig A2 ai
j ψ̄i

µ Γµ λa
j + h.c. , (2.37)

where Aij
1 = A

(ij)
1 , Aij

2 and A2 ai
j are the so called fermion shift matrices which depend on

the scalar fields.

Also the supersymmetry transformations of the fermions have to be endowed with

corrections of order g1, namely

δψi
µ = 2Dµεi +

1

4
i (Vα)∗VM

ij GMα
νρ ΓνρΓµεj −

2

3
g Aij

1 Γµεj ,

δχi = i εαβVα(DµVβ)Γµεi +
1

2
iVαVM

ij GMα
µν Γµνεj −

4

3
i g Aji

2 εj ,

δλi
a = 2iVa

M (DµVM
ij)Γµεj −

1

4
VαVMa GMα

µν Γµνεi + 2 i g A2 aj
i εj , (2.38)

10The complex scalars φ and ψ in [9] translate into our notation as V+ = ψ, V− = iφ and ψ/φ = iτ∗.
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where the same matrices A1 and A2 appear as in the Lagrangian. There are also higher

order fermion terms in the supersymmetry rules, but those do not get corrections in the

gauged theory. We wrote the vector field contribution to the fermion variations in an SL(2)

covariant way. Using the definition (2.15) one finds

iVαVM
ijGMα

µν Γµν = (V−
∗)−1 VM

ij

(

HM+
µν +

1

2
i εµνρλHM+ ρλ

)

Γµν

= (V−
∗)−1 VM

ijHM+
µν Γµν(1 − Γ5) ,

iVαVM
aGMα

µν Γµν = (V−
∗)−1 VM

a

(

HM+
µν − 1

2
i εµνρλHM+ ρλ

)

Γµν

= (V−
∗)−1 VM

aHM+
µν Γµν(1 + Γ5) . (2.39)

Explicitly, the fermion shift matrices are given by

Aij
1 = εαβ(Vα)∗V[kl]

MVN
[ik]VP

[jl]fβM
NP ,

Aij
2 = εαβVαV[kl]

MVN
[ik]VP

[jl]fβM
NP +

3

2
εαβVαVM

ijξβ
M ,

A2 ai
j = εαβVαVM

aVN
[ik]VP

[jk]fβMN
P − 1

4
δj
i ε

αβVαVa
MξβM . (2.40)

Supersymmetry of the Lagrangian forces them to obey in particular11

1

3
Aik

1 Ā1 jk −
1

9
Aik

2 Ā2 jk −
1

2
A2 aj

k Ā2 a
i
k = − 1

4
δi
j V , (2.41)

where the scalar potential V appears on the right hand side. The last equation is indeed

satisfied as a consequence of the quadratic constraints (2.20).

If we have chosen fαMNP and ξαM such that the scalar potential possesses an extremal

point one may wonder whether the associated ground state conserves some supersymmetry,

i.e. whether εi exists such the fermion variations (2.38) vanish in the ground state. The

usual Ansatz is εi = qi ξ, where qi is just an SU(4) vector while ξ is a right-handed Killing

spinor of AdS (V < 0) or Minkowski (V = 0) space, i.e.12

Dµξ = g

√

− 1

12
V ΓµBξ∗ . (2.42)

The Killing spinor equations δψi = 0, δχi = 0 and δλai = 0 then take the form

Aij
1 qj =

√

−3

4
V qi , qjA

ji
2 = 0 , A2aj

iqj = 0 . (2.43)

Due to (2.41) the first equation of (2.43) already implies the other two.

2.4 Examples

In this section we give examples of tensors fαMNP and ξαM that solve the constraints (2.20),

therewith giving examples of gauged N = 4 supergravities. We recover those gaugings that

were already discussed in the literature but also obtain new ones.

11This equation is obtained by considering terms of the form g2ψ̄µΓµε in the variation δL.
12Consistency of the AdS Killing spinor equation can be checked by using Rµνρλ = −

2
3
g2V gµ[ρgλ]ν ,

Γ[µBΓ∗
ν]B

∗ = −Γµν and [Dµ, Dν ]ξ = −
1
4
Rµν

ρλΓρλξ.
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2.4.1 Purely electric gaugings

It can be shown that as a consequence of the constraints (2.20) for every consistent gauging

one can perform a symplectic rotation such that only the electric vector fields serve as

gauge fields [27]. In the maximal supersymmetric theory, i.e. for N = 8, this statement

can even be reversed, i.e. every gauging (defined by some embedding tensor similar to our

fαMNP and ξαM ) that is purely electric in some symplectic frame is consistent (i.e. solves

the quadratic constraints for the embedding tensor). This is different in N = 4 where a

nontrivial quadratic constraint remains also for purely electric gaugings.

In the particular electric frame we have chosen – the one in which the electric and

magnetic vector fields each form a vector under SO(6, n) – the purely electric gaugings are

those for which f−MNP = 0 and ξαM = 0, thus only f+MNP is non-vanishing. This is the

class of theories that were constructed by Bergshoeff, Koh and Sezgin [9]. As mentioned

above the quadratic constraint in this case simplifies to the Jacobi identity (2.22), which

may alternatively be written as

f+R[M
Qf+NP ]

R = 0 . (2.44)

This is a constraint on f+MN
P = f+MNQηQP only, but in addition the linear constraint

f+MNP = f+[MNP ] has to be satisfied, such that the SO(6, n) metric ηMN enters non-

trivially into this system of constraints. The dimension of the gauge group can at most be

6 + n, which is obvious in the case that we consider here (M = 1, . . . , 6 + n), but which is

also the general limit for arbitrary gaugings.

We first want to consider semi-simple gaugings. Let fab
c be the structure constants

of a semi-simple gauge group G0, where a, b, c = 1 . . . dim(G0), dim(G0) ≤ 6 + n, then

ηab = fac
dfbd

c is the Cartan-Killing form and we can choose a basis such that it becomes

diagonal, i.e.

ηab = diag( 1, . . . ,
︸ ︷︷ ︸

p

−1, . . .
︸ ︷︷ ︸

q

) . (2.45)

We can only realize the gauge group G0 if we can embed its Lie algebra g0 = {va} into the

vector space of electric vector fields such that the preimage of ηMN agrees with ηab up to

a factor. This puts a restriction on the signature of ηab, namely either p ≤ 6, q ≤ n (case

1) or p ≤ n, q ≤ 6 (case 2). To make the embedding explicit we define the index M̂ with

range M̂ = 1 . . . p, 7 . . . 6 + q (case 1) or M̂ = 1 . . . q, 7 . . . 6 + p (case 2). We then have

(η
M̂N̂

) = ±(ηab) and we can define

(f+M̂N̂ P̂
) = (fabc) , all other entries of f+MNP zero, (2.46)

where fabc = fab
dηdc. Since G0 is semi-simple fabc is completely antisymmetric and thus

f+MNP satisfies the linear and the quadratic constraint. For n ≤ 6 the possible simple

groups that can appear as factors in G0 are SU(2), SO(2, 1), SO(3, 1), SL(3), SU(2, 1),

SO(4, 1) and SO(3, 2). For larger n we then find SU(3), SO(5), G2(2), SL(4), SU(3, 1),

SO(5, 1), etc.
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Apart from these semi-simple gaugings there are various non-semi-simple gaugings that

satisfy (2.44). Of those we only want to give an example. We can choose three mutual

orthogonal lightlike vectors aM , bM and cM and define f+MNP to be the volume form on

their span, i.e.

f+MNP = a[MbNcP ] . (2.47)

The vectors have to be linearly independent in order that f+MNP is non-vanishing. The

quadratic constraint is then satisfied trivially since it contains ηMN which is vanishing on

the domain of f+MNP . The gauge group turns out to be G0 = U(1)3. We can generalize

this construction by choosing f+MNP to be any three form that has as domain a lightlike

subspace of the vector space {vM}. All corresponding gauge groups are Abelian.

None of the purely electric gaugings can have a ground state with non-vanishing

cosmological constant since the scalar potential (2.11) in this case is proportional to

M++ = Im(τ)−1. Therefore de Roo and Wagemans introduced a further deformation

of the theory [7]. Starting from a semi-simple gauging as presented above they introduced

a phase for every simple group factor as additional parameters in the description of the

gauging. In the next section we will explain the relation of these phases to our parameters

fαMNP and show how these theories fit into our framework.

2.4.2 The phases of de Roo and Wagemans

We now allow for f+MNP and f−MNP to be non-zero but keep ξM
α = 0. The quadratic

constraint (2.20) then reads

fαR[MNfβPQ]
R = 0 , εαβfαMNRfβPQ

R = 0 . (2.48)

To find solutions we start from the situation of the last section, i.e. we assume to have some

structure constants fMNP = f[MNP ] that satisfy the Jacobi-identity fR[M
QfNP ]

R = 0. In

addition we assume to have a decomposition of the vector space {vM} into K mutual

orthogonal subspaces with projectors � iM
N , i = 1 . . . K, i.e. such that for a general vector

vM we have

vM =
K∑

i=1

� iM
NvN , ηMP � iM

N � jP
Q = 0 for i 6= j . (2.49)

Furthermore this decomposition shall be such that the three form fMNP does not mix

between the subspaces, i.e. it decomposes into a sum of three-forms on each subspace

fMNP =
K∑

i=1

f
(i)
MNP , f

(i)
MNP = � iM

Q � iN
R � iP

S fQRS . (2.50)

This implies that the gauge group splits into K factors G0 = G(1) ×G(2) × · · · ×G(K) with

f
(i)
MNP being the structure constant of the i-th factor, each of them satisfying the above

Jacobi-identity separately. Solutions of the constraint (2.48) are then given by

fαMNP =
K∑

i=1

w(i)
α f

(i)
MNP , w(i)

α = (w
(i)
+ , w

(i)
− ) = (cos αi, sin αi), (2.51)
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where the w
(i)
α could be arbitrary SL(2) vectors which we could restrict to have unit length

without loss of generality. The αi ∈ � , i = 1 . . . K, are the de Roo-Wagemans-phases first

introduces in [7]. In the following we want to use the abbreviations ci = cos αi, si = sin αi.

If K = 1 we find f+MNP and f−MNP to be proportional. This case is equivalent to the

purely electric gaugings of the last section since one always finds an SL(2) transformation

such that w
(1)
α becomes (1, 0).

For a semi-simple gauging as described in the last section there is a natural decom-

position of {vM} into mutual orthogonal subspaces and K equals the number of simple

factors in G0. But the above construction also applies for non-semi-simple gaugings.

We have mentioned above that every consistent gauging is purely electric in a particular

symplectic frame. Considering a concrete gauging it is therefore natural to formulate the

theory in this particular frame, and also the two-form gauge fields then disappear from

the Lagrangian. For those gaugings defined by (2.51) we may perform the symplectic

transformation

ÃM+
µ =

K∑

i=1

ci � i
M

N AN+
µ +

K∑

i=1

si � i
M

N AN−
µ ,

ÃM−
µ = −

K∑

i=1

si � i
M

N AN+
µ +

K∑

i=1

ci � i
M

N AN−
µ , (2.52)

such that the covariant derivative depends exclusively on ÃM+
µ

Dµ = ∇µ − g Ãµ
M+fM

NP tNP . (2.53)

Note that the new electric vector fields ÃM+
µ do not form a vector under SO(6, n), but

transform into ÃM−
µ under this group. The Lagrangian in the new symplectic frame reads

e−1L =
1

2
R +

1

8
(DµMMN )(DµMMN ) − 1

4 Im(τ)2
(Dµτ)(Dµτ∗)

− 1

4
IMN F̃µν

M+F̃µνN+ − 1

8
RMN εµνρλF̃M+

µν F̃N+
ρλ − g2V , (2.54)

and the scalar potential (2.11) takes the form [28]

V =
1

16
Im(τ)−1

K∑

i,j=1

(
cicj − 2Re(τ)cisj + |τ |2sisj

)
f

(i)
MNP f

(j)
QRS

×
[1

3
MMQMNRMPS + (

2

3
ηMQ − MMQ)ηNRηPS

]

− 1

18

K∑

i,j=1

cisjf
(i)
MNP f

(j)
QRSMMNPQRS . (2.55)

The kinetic term of the vector fields involves the field strength

F̃µν
M+ = 2∂[µÃν]

M+ − g fNP
M Ã[µ

N+Ãν]
P+ , (2.56)
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and the scalar dependent matrices IMN and RMN which are defined by

(I−1)MN =
1

Im(τ)

K∑

i,j=1

(
cicj − 2Re(τ)cisj + |τ |2sisj

)
� i

M
P� j

N
Q MPQ ,

RMN (I−1)NP =
1

Im(τ)

K∑

i,j=1

[
−cisj + Re(τ)(sisj − cicj) + |τ |2sicj

]
� iMN� j

P
RMNR .

(2.57)

In general, when going to the electric frame for an arbitrary gauging there is still a topo-

logical term for the electric fields of the form AA∂A + AAAA [40], but here this term is

not present.

Comparing the scalar potential V for non-vanishing phases αi with that of the last

section we find it to have a much more complicated τ dependence and one can indeed find

gaugings where it possesses stationary points [10, 28].

2.4.3 IIB flux compactifications

We now want to consider gaugings with an origin in type IIB supergravity. N = 4 su-

pergravity can be obtained by an orientifold compactification of IIB [11, 12] and in the

simplest T 6/�2 case this yields the ungauged theory with n = 6, i.e. the global symmetry

group is G = SL(2) × SO(6, 6). Here, the SL(2) factor is the symmetry that was already

present in ten dimensions and SO(6, 6) contains the GL(6) symmetry group associated with

the torus T 6. The compactification thus yields the theory in a symplectic frame in which

SL(2)×GL(6) is realized off-shell. Turning on fluxes results in gaugings of the theory that

are purely electric in this particular symplectic frame. This is the class of gaugings to be

examined in this subsection.

An SO(6, 6) vector decomposes under GL(6) = U(1)×SL(6) into 6⊕6. The vector fields

Aµ
Mα split accordingly into electric ones Aµ

Λα and magnetic ones Aµ Λ
α where Λ = 1 . . . 6

is a (dual) SL(6) vector index. The SO(6, 6) metric takes the form

ηMN =

(

ηΛΓ ηΛ
Γ

ηΛ
Γ ηΛΓ

)

=

(

0 δΓ
Λ

δΛ
Γ 0

)

. (2.58)

The gauge group generators (2.24) split as XMα = (XΛα, XΛ
α) and a purely electric

gauging satisfies XΛ
α = 0. The tensors ξαM and fαMNP decompose into the following

representations

(2,12) → (2,6) ⊕ (2,6) ,

(2,220) → (2,6) ⊕ (2,20) ⊕ (2,84) ⊕ (2,84) ⊕ (2,20) ⊕ (2,6) . (2.59)

From (2.24) one finds that the condition XΛ
α = 0 demands most of these components to

vanish, only the (2,20) and a particular combinations of the two (2,6)’s are allowed to be

non-zero. Explicitly we find for the general electric gaugings in this frame

ξαM = (ξαΛ, ξα
Λ) = (ξαΛ, 0) ,

fαMNP = (fαΛΓΣ, fαΛΓ
Σ, fαΛ

ΓΣ, fα
ΛΓΣ) = (fαΛΓΣ, ξα[ΛδΣ

Γ], 0, 0) . (2.60)
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This Ansatz automatically satisfies most of the quadratic constraints (2.20), the only con-

sistency constraint left is

f(α[ΛΓΣ ξβ)Ψ] = 0 . (2.61)

Thus for ξαΛ = 0 we find fαΛΓΣ to be unconstrained, i.e. every choice of fαΛΓΣ gives a

valid gauged theory. It turns out that fαΛΓΣ corresponds to the possible three-form fluxes

that can be switched on. These theories and extensions of them were already described and

analyzed in [13, 14]. It was noted in [41] that not all N = 4 models that come from T 6/�2

orientifold compactifications can be embedded into the N = 8 models from torus reduction

of IIB, since for the latter the fluxes have to satisfy the constraint fα[ΛΓΣfβΨ∆Ξ] = 0.

Searching for solutions to the constraint (2.61) with ξαΛ non-vanishing one finds that

the possible solutions have the form

fαΛΓΣ = ξα[Λ AΓΣ] , or fαΛΓΣ = εβγ Bα[Λ ξβΓ ξγΣ] , (2.62)

with unconstraint ξαΛ, AΛΓ = A[ΛΓ] and BαΛ, respectively.

Theories with both fαMNP and ξαM non-zero were not yet considered in the literature.

For fαMNP = 0 the remaining quadratic constraints on ξαM demands it to be of the form

ξαM = vα wM , with vα arbitrary and wM lightlike, i.e. wMwM = 0. Thus for vanishing

fαMNP the solution for ξαM is unique up to SL(2)×SO(6, n) transformations. This solution

corresponds to the gauging that can be obtained from Scherk-Schwarz reduction from D = 5

with a non-compact SO(1, 1) twist, which was constructed in [29] for the case of one vector

multiplet. This suggests that in certain cases non-vanishing ξαM corresponds to torsion on

the internal manifold. But this does not apply for the IIB reductions in this section since

ξαΛ is a doublet under the global SL(2) symmetry of IIB, while a torsion parameter should

be a singlet. We have shown that these theories with non-vanishing ξαΛ are consistent

N = 4 supergravities, but their higher-dimensional origin remains to be elucidated.

The list of gauged N = 4 supergravities that were presented in this section is, of course,

far from complete. One could, for example, discuss other orientifold compactifications of

IIA and IIB supergravity, for all of which turning on fluxes yields gauged theories in four

dimensions [15, 16]. However, the examples discussed were hopefully representative enough

to show that indeed all the various gaugings appearing in the literature can be embedded

in the universal formulation presented above. New classes of gaugings are those with both

fαMNP and ξαM non-vanishing. Every solution of the quadratic constraints (2.20) yields

a consistent gauging . For additional examples see [42].

3. Gauged N = 4 supergravities in D = 5

In analogy to the four dimensional theory presented in the last section we now describe

the general gauged N = 4 (half-maximal) supergravity in five spacetime dimensions13.

13Sometimes the half-maximal supergravities in D = 5 are referred to as N = 2 theories. We prefer the

notation N = 4 since they are related to the N = 4 theories in four dimensions via a torus reduction. In

this notation the minimal supergravity in D = 5 is denoted as N = 2.
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The general gauging in D = 5 is parameterized by three real tensors fMNP , ξMN and

ξM , taking the role of fαMNP and ξαM from the last section. Our presentation is less

detailed than for the four dimensional theory because for the case ξM = 0 these theories

were already presented in the literature [31]. On the other hand, gaugings with vanishing

fMNP and ξMN but non-zero ξM have a non-semi-simple gauge group and originate in

generalized dimensional reduction from D = 6 supergravity [29]. Here we complete the

analysis of [29, 31] by including gaugings with all tensors fMNP , ξMN and ξM non-zero.

We give the complete bosonic Lagrangian and Killing spinor equations and at the end of

this section make contact with the four dimensional theory.

3.1 Quadratic constraints and gauge algebra

The global symmetry group of ungauged D = 5, N = 4 supergravity is G = SO(1, 1) ×
SO(5, n), where n ∈ � counts the number of vector multiplets. The theory contains Abelian

vector gauge fields that form one vector AM
µ and one scalar A0

µ under SO(5, n). Note that

the index M = 1 . . . 5 + n now is a vector index of SO(5, n) while in the last section we

used it for SO(6, n). The vector fields carry SO(1, 1) charges 1/2 and −1, respectively, i.e.

δ0̂A
M
µ =

1

2
AM

µ , δ0̂A
0
µ = −A0

µ , (3.1)

where δ0̂ denotes the SO(1, 1) action. The corresponding algebra generator is denoted t0̂
while the SO(5, n) generators are tMN = t[MN ]. For the representations of the vector gauge

fields these generators explicitly read

tMN P
Q = δQ

[Mη
N ]P , t0̂M

N = −1

2
δN
M , tMN 0

0 = 0 , t0̂0
0 = 1 . (3.2)

The general gauging of the theory is parameterized by tensors fMNP = f[MNP ], ξMN =

ξ[MN ] and ξM . They designate the gauge group and assign the vector gauge fields to the

gauge group generators. The general covariant derivative reads

Dµ = ∇µ − g AM
µ fM

NP tNP − g A0
µ ξNP tNP − g AM

µ ξN tMN − g AM
µ ξM t0̂ , (3.3)

where the indices are raised and lowered by using the SO(5, n) metric ηMN and g is the

gauge coupling constant. In order that the above expression is G invariant we need fMNP

and ξM to carry SO(1, 1) charge −1/2 and ξMN to have charge 1. By G invariance we mean

a formal invariance treating the fMNP , ξMN and ξM as spurionic objects that transform

under G. However, as soon as we choose particular values for these tensors the global G

invariance is broken and only a local G0 ⊂ G invariance is left.

To guarantee the closure of the gauge group and the consistency of the gauging we

need the following quadratic constraints to be satisfied for a general gauging

ξMξM = 0 , ξMNξN = 0 , fMNP ξP = 0 ,

3fR[MN fPQ]
R = 2f[MNP ξQ] , ξM

Q fQNP = ξM ξNP − ξ[N ξP ]M . (3.4)

This implies for example that ξM has to vanish for n = 0 since for an Euclidean metric

ηMN one has no lightlike vectors. In general, however, all three tensors may be non-zero at
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the same time. For the sake of discussing the closure of the gauge group it is convenient to

consider the group action on the vector field representation defined by (3.2). Introducing

the composite index M = {0, M}, i.e. AM
µ = (A0

µ, AM
µ ), we have

Dµ ΛM = ∇µ ΛM + g AN
µ XNP

M ΛP , (3.5)

where the gauge group generators XMN
P = (XM)N

P are given by

XMN
P = −fMN

P − 1

2
ηMNξP + δP

[MξN ] , XM0
0 = ξM , X0M

N = −ξM
N , (3.6)

and all other components vanish. For the commutator of these generators one finds

[XM,XN ] = −XMN
P XP , (3.7)

i.e. the gauge group closes and XMN
P itself takes the role of a generalized structure

constant. The closure relation (3.7) is equivalent to the quadratic constraint (3.4).

For gaugings with only fMNP non-zero we see that this tensor is a structure constant

for a subgroup G0 of SO(5, n) that is gauged by using AM
µ as vector gauge fields. If only

ξMN is non-zero we find a one-dimensional subgroup of SO(5, n) to be gauged with gauge

field A0
µ. And for gaugings with only ξM non-zero one finds a 4 + n dimensional gauge

group SO(1, 1) n SO(1, 1)3+n where the first factor involves the SO(1, 1) of G.

Note further that (3.7) is of precisely the same form as the closure relation (2.27)

which we had in four dimensions. This is not by accident but we have just applied a

general method of how to gauge supersymmetric theories which goes under the name of

the embedding tensor [21 – 24, 27]. In this language the tensors fMNP , ξMN and ξM

are components of the embedding tensor which is a linear map from the vector space of

vector gauge fields to the Lie algebra of invariances of the ungauged theory. Independent

of the number of supersymmetries or of the spacetime dimension the embedding tensor

always has to satisfy the quadratic constraint (3.7). In addition it always satisfies a linear

constraint which involves extra objects and whose form depends on the number of spacetime

dimensions. For example in D = 4 the linear constraint involves the antisymmetric tensor

ΩMN and has the form X(MN
QΩP)Q = 0 [27] while in D = 5 it involves the tensor dMNP

and takes the form (3.10) below. Our presentation of the five dimensional theory is to a

large extend based on [23] where the corresponding maximal supergravity was presented.

To give the Lagrangian and the gauge transformations of the theory in the next section

it is useful to introduce the tensors dMNQ = d(MNQ) and ZMN = Z [MN ] as follows

d0MN = dM0N = dMN0 = ηMN , all other components zero, (3.8)

and

ZMN =
1

2
ξMN , Z0M = −ZM0 =

1

2
ξM . (3.9)

The embedding tensor then satisfies

X(MN )
P = dMNQZPQ . (3.10)
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3.2 The general Lagrangian

We have already introduced the vector fields AM
µ and A0

µ. In addition the bosonic field

content consists of scalars that form the coset SO(1, 1) × SO(5, n)/SO(5) × SO(n) and

two-form gauge fields Bµν M = (Bµν M , Bµν 0). In the ungauged theory these two-form

fields do not appear in the Lagrangian but can be introduced on-shell as the duals of the

vector gauge fields. In the gauged theory we consider both vector and two-form fields as

off-shell degrees of freedom, however, the latter do not have a kinetic term but couple to

the vector fields via a topological term such that they turn dual to the vectors due to their

own equations of motion [23]. This is analogous to the four dimensional case where the

two-forms turned out to be dual to scalars via the equations of motion.

The SO(1, 1) part of the scalar manifold is simply described by one real field Σ that is

a singlet under SO(5, n) and carries SO(1, 1) charge −1/2. In addition we have the coset

SO(5, n)/SO(5)×SO(n) which is parameterized by a coset representative V = (VM
m, VM

a),

where m = 1 . . . 5 and a = 1 . . . n are SO(5) and SO(n) vector indices. Our conventions

for V here are the same as for the SO(6, n)/SO(6) × SO(n) coset representative we had

in four dimensions, see equations (2.3), (2.4), (2.5). In addition to the symmetric matrix

MMN = VVT and its inverse MMN we need the completely antisymmetric

MMNPQR = εmnopqVM
mVN

nVP
oVQ

pVR
q . (3.11)

The two-form gauge fields transform dual to the vector gauge field under G, i.e. Bµν M

is a vector with SO(1, 1) charge −1/2 and Bµν 0 is a singlet carrying charge 1. They enter

into the covariant field strength of the vector fields as follows

HM
µν ≡ 2∂[µAM

ν] + gXNP
MAN

µ AP
ν + gZMNBµν N . (3.12)

We now have all objects to give the bosonic Lagrangian of the general gauged N = 4

supergravity in five dimensions

Lbos = Lkin + Ltop + Lpot . (3.13)

It consists of a kinetic part

e−1Lkin =
1

2
R − 1

4
Σ2 MMN HM

µν HN µν − 1

4
Σ−4 H0

µν H0 µν

− 3

2
Σ−2 (DµΣ)2 +

1

16
(DµMMN )(DµMMN ) , (3.14)

a topological part [23]

Ltop = − e

8
√

2
εµνρλσ

{

gZMNBµν M

[

DρBλσ N + 4dNPQAP
[ρ

(

∂λAQ
σ] +

1

3
gXRS

PAR
λ AS

σ]

)]

− 8

3
dMNP AM

µ ∂νA
N
ρ ∂λAP

σ − 2 g dMNP XQR
M AN

µ AQ
ν AR

ρ ∂λAP
σ

− 2

5
g2 dMNP XQR

M XST
P AN

µ AQ
ν AR

ρ AS
λ AT

σ

}

, (3.15)
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and a scalar potential

e−1Lpot = −g2V

= −g2

4

[

ξMNP ξQRSΣ−2

(
1

12
MMQMNRMPS− 1

4
MMQηNRηPS+

1

6
ηMQηNRηPS

)

+
1

4
ξMNξPQΣ4

(
MMP MNQ − ηMP ηNQ

)
+ ξMξNΣ−2MMN

+
1

3

√
2ξMNP ξQRΣMMNPQR

]

. (3.16)

For ξM = 0 the latter agrees with the potential given in [31].

The topological term seems complicated, but its variation with respect to the vector

and tensor gauge fields takes a rather simple and covariant form, namely

δLtop =
e

4
√

2
εµνρλσ

(
1

3
g ZMN H(3)

µνρM ∆BλσN + dMNP HM
µν HN

ρλ δAP
σ

)

+ tot. deriv. ,

(3.17)

where we have used the covariant variation

∆Bµν N ≡ ZMN
(

δBµν N − 2dNPQAP
[µδAQ

ν]

)

, (3.18)

and the covariant field strength of the two-form gauge fields

ZMNH(3)
µνρN = ZMN

[

3D[µ Bνρ]N + 6 dNPQ AP
[µ

(

∂ν AQ
ρ] +

1

3
g XRS

Q AR
ν AS

ρ]

)]

. (3.19)

Note that the two-forms appear in the Lagrangian always projected with ZMN , i.e. they

completely decouple from the theory for the ungauged case g → 0, but also for the gauged

theory there are never all two-forms entering the Lagrangian. For gaugings with only fMNP

non-zero we have ZMN = 0 and thus no two-forms are needed. In the last equation we

also defined the field strength of the two-forms only under ZMN projection because only

then it transforms covariantly under the following gauge transformations [23]

δAM
µ = DµΛM − gZMNΞµN ,

∆Bµν M =
(
2D[µΞν]M − 2dMNPHN

µνΛP
)

. (3.20)

Here ΛM = ΛM(x) and ΞµM = ΞµM(x) parameterize the (tensor) gauge transformations.

Also the field strength HM
µν transforms covariantly under these transformations, i.e.

δHM
µν = −gΛNXNP

MHP
µν . (3.21)

The topological term Ltop is invariant under (3.20) up to a total derivative. The algebra

of gauge transformations closes analogous to the one we found in four dimensions (2.29).

Varying the two-forms in the Lagrangian yields the equation of motion

ZMN

(
1

6
√

2
εµνρλσ H(3) ρλσ

N −MNPHP
µν

)

= 0 , (3.22)
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where we have used

MMN ≡
(

Σ−4 0

0 Σ2MMN

)

. (3.23)

Due to equation (3.22) the two-forms become dual to the vector gauge fields as was an-

nounced earlier.

3.3 Killing spinor equations

We now turn to the fermions of the five dimensional theory in order to give the Killing

spinor equations. The fermions come in representations of the maximal compact subgroup

H = USp(4) × SO(n) of G, where USp(4) is the covering group of SO(5). In the gravity

multiplet there are four gravitini ψµi and four spin 1/2 fermions χi, both vectors under

USp(4) and singlets under SO(n), i = 1 . . . 4. In the n vector multiplets there are 4n

spin 1/2 fermions λa
i which form a vector under both USp(4) and SO(n), a = 1 . . . n. All

fermions are pseudo-Majorana, i.e. they satisfy a pseudo-reality constraint of the form

ξi = ΩijC(ξ̄j)T , where Ωij is the USp(4) invariant symplectic form and C is the charge

conjugation matrix.

The coset representative VM
m transforms as a 5 under USp(4) and can alternatively

be expressed as VM
ij = VM

[ij] subject to

VM
ijΩij = 0 , (VM

ij)∗ = ΩikΩjlVM
kl . (3.24)

Under supersymmetry transformations parameterized by εi = εi(x) we have

δψµi = Dµεi −
i

6

(

ΩijΣVM
jkHM

νρ −
1

4

√
2 δk

i Σ−2H0
νρ

)
(
Γµ

νρ − 4δν
µΓρ

)
εk

+
ig√
6

Ωij Ajk
1 Γµ εk ,

δχi = −1

2

√
3 i (Σ−1DµΣ)Γµεi −

1

6

√
3

(

Σ Ωij VM
jkHM

µν +
1

2

√
2 Σ−2 δk

i H0
µν

)

Γµνεk

+
√

2 g Ωij Akj
2 εk ,

δλa
i = iΩjk (VM

aDµVij
M )Γµεk − 1

4
ΣVM

a HM
µν Γµν εi +

√
2 g Ωij Aakj

2 εk . (3.25)

Here we have neglected higher order fermion terms. These fermion variations could formally

be read off from [31]. But the fermion shift matrices A1ij , A2ij and Aa
2ij which are defined

below now include contributions from the vector ξM .

Using VM
a and VM

ij we can define from fMNP , ξMN and ξM scalar dependent tensors

that transform under H. The vector ξM gives

τ ij = Σ−1VM
ij ξM , τa = Σ−1VM

a ξM , (3.26)

from the 2-form ξMN one gets

ζij =
√

2 Σ2Ωkl VM
ikVN

jl ξMN , ζaij = Σ2VM
aVN

ij ξMN , (3.27)
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and the 3-form fMNP yields

ρij = −2

3
Σ−1V ik

MVjl
NVP

kl f
MN

P , ρaij =
√

2 Σ−1 Ωkl VM
aVN

ikVP
jl fMNP , (3.28)

where λij = λ[ij], ζij = ζ(ij), ζaij = ζa[ij], ρij = ρ(ij), ρaij = ρa(ij). 14 The fermion shift

matrices can now be defined as

Aij
1 =

1√
6

(
−ζij + 2ρij

)
,

Aij
2 =

1√
6

(

ζij + ρij +
3

2
τ ij

)

,

Aaij
2 =

1

2

(

−ζaij + ρaij − 1

4

√
2 τa Ωij

)

. (3.29)

These matrices do not only appear in the fermion variations but also in the fermion mass

terms that have to appear in the Lagrangian of the gauged theory

e−1Lf.mass =

√
6 i g

4
Ωki A

ij
1 ψ̄k

µΓµνψν j +
√

2 g Ωkj Aji
2 ψ̄k

µΓµχi +
√

2 g Ωkj Ajia
2 ψ̄k

µΓµλa
i .

(3.30)

Note that we have only given those terms that involve the gravitini. Supersymmetry

imposes the following condition on the fermion shift matrices

Ωkl

(

Aik
1 Ajl

1 − Aik
2 Ajl

2 − Aaik
2 Aajl

2

)

= −1

4
ΩijV , (3.31)

where the scalar potential appears on the right hand side. Again this condition is satisfied

as a consequence of the quadratic constraint (3.4).

3.4 Dimensional reduction from D = 5 to D = 4

Starting from a five dimensional N = 4 supergravity one can perform a circle reduction to

get a four dimensional N = 4 supergravity. Thus any five dimensional gauging described by

fMNP , ξMN and ξM must give rise to a particular four dimensional gauging characterized

by fαMNP and ξαM . In other words the set of five dimensional gaugings is embedded into

the set of four dimensional gaugings and we now want to make this embedding explicit.

This yields additional examples of four dimensional gaugings, but it is also interesting in

the context of string dualities in presence of fluxes since the two tensors fMNP and ξMN

in D = 5 turn out to be parts of the single tensor fαMNP under the larger duality group in

D = 4. Thus, as usual, one gets a more unified description of gaugings with different higher

dimensional origin when compactifying the supergravity theory further. With all the group

structure at hand it is not necessary to explicitly perform the dimensional reduction but

we can read off the connection from the formulas for the covariant derivatives (2.12) and

(3.3) (that is from the embedding tensor).

14Our notation translates into that of [31] as follows: aµ = A0
µ, ΛM

N = g

gA
ξM

N , fP
MN = −

g

gS
fMN

P ,

Uij = −
g

6gA
ζij , V a

ij = −
g

√
2gA

ζa
ij , Sij = g

3gS
ρij , T a

ij = g
√

2gS

ρa
ij .
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A five dimensional theory with n vector multiplets yields a four dimensional theory

with n+1 vector multiplets. One way to understand that is by counting scalar fields. There

are 5n+1 scalars already present in five dimensions and in addition one gets one scalar from

the metric and 6+n scalars form the vector fields which gives 6n+8 in total and agrees with

the number of scalars in the coset SL(2)× SO(6, n + 1)/SO(2)× SO(6)× SO(n + 1). When

breaking the SO(6, n+1) into SO(1, 1)A ×SO(5, n) the vector representation splits into an

SO(5, n) vector vM and two scalars v⊕ and vª with charges 0, 1/2 and −1/2, respectively,

under SO(1, 1)A. When breaking the SL(2) into SO(1, 1)B the vector splits into two scalars

v+ and v− with charges 1/2 and −1/2 under SO(1, 1)B . The four dimensional vector fields

therefore split into AM+
µ , AM−

µ , A⊕+
µ , A⊕−

µ , Aª+
µ and Aª−

µ . We can now identifying the

five dimensional vector fields as

AM
µ = AM+

µ , A0
µ = Aª−

µ , (3.32)

and these fields carry charges 1/2 and −1 under the diagonal of SO(1, 1)A and SO(1, 1)B and

the five dimensional SO(1, 1) therefore has to be this diagonal. Thus the five dimensional

global symmetry generators are given in terms of the four dimensional ones as follows

t0̂ = t
SL(2)
+− + t

SO(6,n+1)
ª⊕ , tMN = t

SO(6,n+1)
[MN ] . (3.33)

The vector fields AM−
µ , A⊕+

µ are the four dimensional duals of AM+
µ and Aª−

µ , they come

from the two-form gauge fields in five dimensions. The vector fields A⊕−
µ and Aª+

µ are

uncharged under the five dimensional SO(1, 1), they are the Kaluza-Klein vector coming

from the metric and its dual field.

Now, if a four dimensional vector field that was already a vector field in five dimensions

(3.32) gauges a four dimensional symmetry that was already a symmetry in five dimensions

(3.33) the corresponding gauge coupling in the covariant derivative in D = 4 has to be the

same as in D = 5. For the four dimensional covariant derivative (2.12) one finds

Dµ = ∇µ − g Aµ
M+

(
Θ+M

NP tNP + 2f+M
ª⊕tª⊕ + ξ+M t+−

)

− g Aµ
ª−

(
f−ª

NP tNP + ξ−ªtª⊕ − ξ−ªt+−

)
+ Dadd

µ , (3.34)

where ΘαMNP is defined in (2.7)15 and Dadd
µ denotes exclusively four dimensional contri-

butions to the covariant derivative. By comparing with the known covariant derivative in

five dimensions (3.3) one gets

ξ+M = ξM , f+M⊕ª =
1

2
ξM , f−ªMN = ξMN , f+MNP = fMNP . (3.35)

For a simple circle reduction it is natural to demand furthermore f±MN⊕ = 0, f+MNª = 0,

f−MNP = 0, f−M⊕ª = 0, ξ−M = 0, ξ±⊕ = 0 and ξ±ª = 0. Some of the last quantities,

however, may be non-zero for more complicated dimensional reductions and may then

for example correspond to Scherk-Schwarz generators [29]. But for the ordinary circle

15Note that what we called n in section 2 is now n + 1 and the index M now is an SO(5, n) vector index

rather than a SO(6, n + 1) index.
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reduction we have just given the embedding of the five dimensional gaugings into the four

dimensional ones. In addition to the above equations we have to make sure that fαM̃ÑP̃

is totally antisymmetric in the last three indices (M̃ = {M,⊕,ª}). One can then show

that for these tensors fαM̃ÑP̃ and ξαM̃ the four dimensional quadratic constraint (2.20)

becomes precisely the five dimensional one (3.4) for fMNP , ξMN and ξM . Also the four

and the five dimensional scalar potentials (2.11), (3.16) become the same if all scalars that

are not yet present in D = 5 are set to the origin16.

Due to the antisymmetry of fαM̃ÑP̃ one finds the following additional terms in the

D = 4 covariant derivative:

Dadd
µ = −g Aµ

M−
(
2ξM

N tNª + ξM t−−

)

+ g Aµ
ª+ ξN (tNª − tN⊕) + g Aµ

⊕+ ξN (tNª + tN⊕) . (3.36)

These are couplings of vector fields to symmetry generators that both only occur in four

dimensions. If one explicitly performs the dimensional reduction by hand these gauge

couplings originate from the dualization of the various fields.

4. Conclusions

The general gaugings of N = 4 supergravity in D = 5 and D = 4 were presented. The

D = 4 gaugings are parameterized by two SL(2) × SO(6, n) tensors fαMNP and ξαM ,

subject to a set of consistency constraints. New classes of gaugings were found and it was

shown how the known gaugings are incorporated in this framework. Remarkably, all known

examples can be described by turning on only fαMNP or ξαM , but we have shown that for a

general gauging both tensors can be non-vanishing. Similarly, in five dimensions the general

gaugings are parameterized by three SO(1, 1)× SO(5, n) tensors fMNP , ξMN and ξM . The

gaugings with ξM = 0 were already described in [31], but it is necessary to incorporate

ξM to also include non-semi-simple gaugings that result from Scherk-Schwarz dimensional

reduction [29]. For a generic gauging all three tensors may be non-zero. It would be very

interesting to understand how all these gaugings can be obtained from compactifications

of string- or M-theory. For example for the D = 4 gaugings with non-vanishing de Roo-

Wagemans phases the higher dimensional origin is not yet known. The compactifications

that yield these gaugings might be of unconventional type [43, 44]. The unifying scheme

presented in this paper should be a useful tool when tackling these questions in a covariant

form. On the other hand, we have so far only presented the gauged theories and have shown

their consistency. It would be interesting to further study these theories by classifying their

ground states, computing the mass spectrum, analyzing stability, etc.
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A. Gauged half-maximal supergravities in D = 3

The general gauged half-maximal supergravity in D = 3 was given in [38, 45]. Here we

shortly describe the underlying group theory and the tensors that parameterize the gauging.

We then give the fermion shift matrices and the scalar potential in the same form as we

did in four and five dimensions. Finally we describe the embedding of the four dimensional

gaugings into the three dimensional ones. This relation is necessary in order to calculate

the four and five dimensional scalar potentials from the known three dimensional one.

A.1 General gauging, scalar potential, fermion shift matrices

The global symmetry group of the ungauged theory is G = SO(8, n), where n again counts

the number of vector multiplets. The vector fields Aµ
MN = Aµ

[MN ] transform in the adjoint

representation of G. Here M,N = 1, . . . , 8 + n are SO(8, n) vector indices. The general

gauging is parameterized by the two real tensors λMNPQ = λ[MNPQ] and λMN = λ(MN),

with ηMNλMN = 0, and one real scalar λ. Together they constitute the embedding tensor

ΘMNPQ = λMNPQ + λ[P [M ηN ]Q] + λ ηP [M ηN ]Q , (A.1)

which enters into the covariant derivative

Dµ = ∂µ − Aµ
MNΘMN

PQtPQ . (A.2)

Due to the above definition the embedding tensor automatically satisfies the linear con-

straint

ΘMN PQ = ΘPQMN . (A.3)

In addition it has to satisfy the quadratic constraint

ΘMNT
V ΘPQV

U − ΘPQT
V ΘMNV

U = ΘMN [P
V ΘQ]V T

U , (A.4)

which may be written as a constraint on λMNPQ, λMN and λ.

The scalars of the theory form the coset SO(8, n)/SO(8)× SO(n) and in the following

we use the same conventions and notations as for the SO(6, n)/SO(6)×SO(n) coset in four

dimension, in particular we again have

MMN = VM
aVN

a + VM
mVN

m , ηMN = VM
aVN

a − VM
mVN

m , (A.5)

where now a = 1, . . . , n and m = 1, . . . , 8. In addition we need the scalar dependent object

MMNPQRSTU = εmnopqrstVM
mVN

nVP
oVQ

pVR
qVS

rVT
sVU

t . (A.6)

– 27 –



J
H
E
P
0
5
(
2
0
0
6
)
0
3
4

The scalar potential then takes the form

V = − 1

24

[

λMNPQλRSTU

(

− 1

2
MMRMNSMPTMQU + 3MMRMNSηPT ηQU

− 4MMRηNSηPT ηQU +
3

2
MMRηNSηPTηQU +

1

3
MMNPQRSTU

)

+ λMNλPQ

(

−3

2
MMP MNQ +

3

2
ηMP ηNQ +

3

4
MMNMPQ

)

+ 192λ2 − 24λλMNMMN

]

. (A.7)

Although written differently, this is the same potential as given in [38].

The maximal compact subgroup of G is H = SO(8)×SO(n). All the fermions and the

fermion shift matrices A1 and A2 transform under H. Let A, Ȧ = 1, . . . , 8 be (conjugate)

SO(8) spinor indices. The Gamma-matrices of SO(8) satisfy

Γ
(m

AȦ
Γ

n)

BȦ
= δmnδAB , Γmn

AB ≡ Γ
[m

AȦ
Γ

n]

BȦ
. (A.8)

Then the fermion shift matrices A1 and A2 are defined through the so called T -tensor as

follows [38]

TAB CD =
1

16
ΓAB

mnΓCD
op VM

mVN
nVP

oVQ
pΘMN PQ ,

TAB ma =
1

4
ΓAB

op VM
oVN

pVP
mVQ

aΘMN PQ ,

AAB
1 = −8

3
TAC BC +

4

21
δABTCD CD ,

AAB
2 ma = 2TAB

ma −
2

3
ΓC(A

mn TB)C
na −

1

21
δABΓCD

mn TCD
na . (A.9)

The quadratic constraint (A.4) guarantees that A1 and A2 satisfy

AAC
1 ABC

1 − AAC
2 maA

BC
2 ma = − 1

128
δABV , (A.10)

with the scalar potential V appearing on the right hand side.

A.2 From D = 4 to D = 3

Performing a circle reduction of four dimensional N = 4 supergravity with n vector mul-

tiplets yields a three dimensional N = 8 supergravity with n + 2 vector multiplets. The

embedding of the global symmetry groups is given by

SO(8, n + 2) ⊃ SO(2, 2) × SO(6, n) ⊃ SL(2) × SO(6, n) , (A.11)

where the SL(2) is just one of the factors in SO(2, 2) = SL(2) × SL(2). Accordingly we

split the fundamental representation of SO(8, n+2) as vM̃ = (vM , vxα) where α = 1, 2 and

x = 1, 2. Note that the SO(8, n + 2) vector index is denoted by M̃ , while M is an SO(6, n)

vector index. The SO(2, 2) metric is given by

ηxα yβ = εxyεαβ , which yields ηxα yβηyβ zγ = δzγ
xα . (A.12)
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The SL(2) generators t(αβ), t(xy) and the SO(2, 2) generators txα yβ = tyβ xα are related as

follows

txαyβ = −1

2
(εαβtxy + εxytαβ) , (A.13)

where we use the conventions (tMN )P
Q = δQ[MηN ]P for the SO(2, 2) generators (M = xα).

The embedding of the D = 4 vector fields into the D = 3 ones is then given by

AMα
µ = AM 1α

µ , (A.14)

where AM 1α
µ denotes the corresponding components of the D = 3 vector fields AM̃Ñ

µ =

A
[M̃Ñ ]
µ . Analogous to the reduction from D = 5 to D = 4 described in section 3.4, now the

covariant derivatives in D = 4 and D = 3 have to agree for those terms already present in

D = 4, i.e.

Dµ ⊃ ∂µ − 2AM 1α
µ ΘM 1α

NP tNP + AM 1α
µ ΘM 1α

xβ yγ εxy tβγ

= ∂µ − Aµ
MαΘMα

NP tNP − Aµ
MαΘMα

βγtβγ . (A.15)

This yields

λ1α MNP = − 1

2
fαMNP , λM 1α xβ yγεxy =

1

2
εα(γξβ)M , λ1α M = ξαM , (A.16)

while we demand the other components of λM̃ÑP̃ Q̃ and λM̃Ñ to vanish and also λ = 0.

However, the antisymmetry of λM̃ÑP̃ Q̃ and the symmetry of λM̃Ñ has to be imposed, for

example

λM zα xβ yγ = λ̃M [{zα} {xβ} {yγ}] , λ̃M zα xβ yγ =
1

2
δ1
zεxyεα(γξβ)M . (A.17)

We have thus defined the embedding of the four dimensional gaugings into the three dimen-

sional ones. The quadratic constraint (A.4) in D = 3 is satisfied iff the D = 4 quadratic

constraint (2.20) is satisfied. The D = 3 scalar potential (A.7) reduces to the D = 4

potential (2.11) when all D = 3 extra scalars are set to the origin.
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